
UNIMES 2017 - MEDICINA UNIVERSIDADE METROPOLITANA DE SANTOS

01. O esquema e o quadro apresentados a seguir explicam um processo de obtenção de DNA de folhas de um vegetal.

Etapa	Procedimento	Finalidade					
1	Pulverizar o tecido vegetal em um almofariz contendo N_2 líquido.	Romper as paredes celulares.					
2	Adicionar ao vegetal em pó detergente e solução de pH 8,0. Aquecer a mistura 65 °C por 20 minutos.	Liberar o DNA.					
3	Adicionar clorofórmio: álcool isoamílico 24:1 (v/v).						
4	Agitar cuidadosamente.	Separar os ácidos nucleicos das proteínas e dos polissacarídeos.					
5	Centrifugar e separar a fração aquosa.	HA					
6	Coletar a fração aquosa.						
7	Adicionar álcool isopropílico a – 20 °C à fração aquosa.	Precipitar o DNA.					
8	Centrifugar.						
9	Lavar o precipitado com etanol 70 % (v/v).	Purificar e obter o DNA sólido.					

(www.biotecnologia.com.br. Adaptado.)

- **a)** O procedimento descrito na etapa 1 dever ser definido como uma moagem ou uma extração? Justifique sua resposta.
- **b)** Explique, à luz das interações intermoleculares, por que a adição de álcool isopropílico (C_3H_8O), conforme indicado na etapa 7, leva à precipitação do DNA.

Resolução:

a) Moagem ou maceração.

Na moagem o material é triturado, preferencialmente até a obtenção de um pó.

No caso descrito deseja-se conseguir o rompimento das paredes celulares.

- **b)** Na etapa 7 o álcool isopropílico (CH₃CH(OH)CH₃) faz ligações de hidrogênio com a água presente na fração aquosa separando-as do DNA que será precipitado.
- **02.** Observe a fórmula estrutural do detergente utilizado na obtenção do DNA vegetal.

brometo de cetil trimetil amônio

- **a)** Escreva a fórmula molecular do brometo de cetil trimetil amônio. Quais tipos de ligações químicas esse detergente apresenta?
- **b)** Considerando os radicais funcionais característicos de substâncias orgânicas, indique a função orgânica da qual deriva esse detergente.

Resolução:

a) Fórmula molecular do brometo de cetil trimetil amônio: C₁₉H₄₂NBr.

$$\mathsf{Br}^{-} \begin{bmatrix} \mathsf{H}_{3}\mathsf{C} & \mathsf{CH}_{2} & \mathsf{CH}_{2} & \mathsf{CH}_{2} & \mathsf{CH}_{2} & \mathsf{CH}_{2} & \mathsf{CH}_{2} \\ \mathsf{N}^{+} & \mathsf{CH}_{2} & \mathsf{CH}_{2} & \mathsf{CH}_{2} & \mathsf{CH}_{2} & \mathsf{CH}_{2} & \mathsf{CH}_{2} \\ \mathsf{H}_{3}\mathsf{C} & \mathsf{CH}_{3} & \mathsf{CH}_{3} & \mathsf{CH}_{3} & \mathsf{CH}_{3} & \mathsf{CH}_{3} & \mathsf{CH}_{3} \\ \end{bmatrix}$$

Tipos de ligações químicas apresentadas: iônicas e covalentes (moleculares).

b) Função orgânica da qual deriva esse detergente: amina (terciária).

$$Br = \begin{bmatrix} H_{3}C & CH_{2} & CH_$$

- **03.** Para a obtenção do DNA vegetal, uma solução de pH 8,0 será preparada diluindo-se 50 mL de uma solução de fosfato monobásico de potássio (KH_2PO_4), de concentração igual a 27,2 g/L, em um frasco de 200 mL.
- **a)** Sabendo que a massa molar do KH_2PO_4 é igual a 136 g/mol, calcule a concentração, em mol/L, da solução diluída de KH_2PO_4 .
- **b)** Suponha que, para se obter a solução de fosfato monobásico de potássio com pH 8,0, tenha sido necessário adicionar NaOH 0,1 mol/L à solução do sal. Calcule o pH da solução de NaOH utilizada.

Resolução:

a) Cálculo da concentração, em mol/L, da solução diluída de KH₂PO₄:

50 mL de solução (
$$KH_2PO_4$$
) c = 27,2 g / L $M_{KH_2PO_4}$ = 136 g / mol c = [KH_2PO_4] × $M_{KH_2PO_4}$ = 27,2 g / L = [KH_2PO_4] × 136 g / mol [KH_2PO_4] = 0,2 mol / L

Supõe-se diluição até 200 mL (volume do frasco), então:

$$\begin{split} \mathfrak{M}_{inicial} \times V_{inicial} &= \mathfrak{M}_{final} \times V_{final} \\ 0.2 \text{ mol} / L \times 50 \text{ mL} &= \mathfrak{M}_{final} \times 200 \text{ mL} \\ \mathfrak{M}_{final} &= \frac{0.2 \text{ mol} / L \times 50 \text{ mL}}{200 \text{ mL}} \\ \mathfrak{M}_{final} &= 0.05 \text{ mol} / L = 5 \times 10^{-2} \text{ mol} / L \end{split}$$

b) Cálculo do pH da solução de NaOH utilizada:

$$pH = 8 \Rightarrow [H^{+}] = 10^{-pH} \Rightarrow [H^{+}] = 10^{-8} \text{ mol } / L$$
 Em 1 L :
$$10^{-8} \text{ mol de } H^{+} \longrightarrow 10^{-8} \text{ mol de } OH^{-}$$
 0,1 mol de OH^{-} 0,1 mol de OH^{-} [OH^{-}] = 0,1 mol $/$ L = 10^{-1} mol $/$ L pOH = $-\log[OH^{-}] \Rightarrow pOH = -\log 10^{-1}$ pOH = 1 pH + pOH = 14 pH + 1 = 14 pH = 13

- **04.** Em um cilindro rígido, com capacidade para 5 L, foram armazenados 49 g de nitrogênio líquido.
- **a)** Sabendo que a temperatura do sistema era de 7 °C e que R = 0,082 L·atm·K⁻¹·mol⁻¹, calcule a pressão total, em atmosferas, exercida pelo nitrogênio no interior do cilindro.

b) Analise a tabela.

Ligação	Energia de ligação (kJ·mol·1)
N - N	160
N = N	420
$N \equiv N$	950

Com base na tabela, calcule a variação de entalpia para a transformação a seguir, indicando se é exotérmica ou endotérmica.

$$2N(g) \rightleftharpoons N_2(g)$$

Resolução:

a) Cálculo da pressão total, em atmosferas, exercida pelo nitrogênio no interior do cilindro:

$$T = 273 + 7 = 280 \text{ K}$$

$$V = 5 L; R = 0,082 atm.L.mol^{-1}K^{-1}$$

$$m_{N_2(\ell)} = 49 g$$

$$M_{N_2} = 28 \text{ g / mol}$$

$$n_{N_2} = \frac{m_{N_2(\ell)}}{M_{N_2}} = \frac{49 \text{ g}}{28 \text{ g / mol}}$$

Supondo total vaporização do nitrogênio líquido:

$$P \times V = n \times R \times T$$

$$P \times 5 L = \frac{49 \text{ g}}{28 \text{ g/mol}} \times 0,082 \text{ atm.L.mol}^{-1} \text{K}^{-1} \times 280 \text{ K}$$

$$P = 8,036 \text{ atm} \approx 8 \text{ atm}.$$

b) Cálculo da variação de entalpia para $2N(g) \iff N_2(g)$:

Na formação da ligação química ocorre liberação de calor.

$$2N(g) \iff 1 N \equiv N(g) + \underbrace{calor}_{950 \text{ kJ}}$$

$$\Delta H = -950 \text{ kJ/mol}$$

Transformação exotérmica (ΔH < 0).

PROFESSORA SONIA

1 1 H		CLASSIFICAÇÃO PERIÓDICA													18 2 He		
1,01	2											13	14	15	16	17	4,00
3 Li 6,94	4 Be 9,01											5 B 10,8	6 C 12,0	7 N 14,0	8 O 16,0	9 F 19,0	10 Ne 20,2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31,0	16 S 32,1	17 CI 35,5	18 Ar 39,9
19 K 39,1	20 Ca 40,1	21 Sc 45,0	22 Ti 47,9	23 V 50,9	24 Cr 52,0	25 Mn 54,9	26 Fe 55,8	27 Co 58,9	28 Ni 58,7	29 Cu 63,5	30 Zn 65,4	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79,0	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87,6	39 Y 88,9	40 Zr 91,2	41 Nb 92,9	42 Mo 95,9	43 Tc (98)	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 I n 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57-71 Série dos Lantanídios	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 I r 192	78 Pt 195	79 Au 197	80 Hg 201	81 TI 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 Série dos Actinídios	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (271)	111 Rg (272)							
Série dos Lantanídios																	
Número Atômico Símbolo		bolo		58 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 163	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
Mass	sa Atômic	а	Série dos	Actinídio	s												
() = n.° de massa do isótopo mais estável		Stranger	89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

