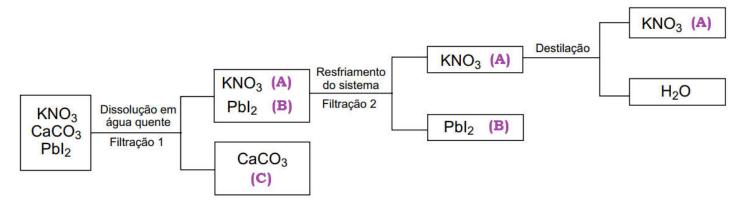

UNIFEV 2024 - MEDICINA - Segundo Semestre Centro Universitário de Votuporanga

CONHECIMENTOS ESPECÍFICOS

01. Uma mistura sólida formada pelos compostos nitrato de potássio (KNO₃), carbonato de cálcio (CaCO₃) e iodeto de chumbo (II) (PbI₂) foi submetida a uma sequência de operações com o objetivo de separá-los, conforme o esquema a seguir:

O quadro apresenta a solubilidade em água dos compostos iniciais.


Composto	Solubilidade em água fria	Solubilidade em água quente						
KNO ₃	Solúvel	Solúvel						
CaCO ₃	Insolúvel	Insolúvel						
PbI ₂	Insolúvel	Solúvel						

Os três compostos, quando separados, foram adicionados a tubos de ensaio contendo solução de $HC\ell$, verificando-se efervescência apenas no tubo que continha o composto C.

- **a)** Considerando o número de fases, classifique a mistura formada pelos compostos A e B após a filtração 1 e antes do resfriamento do sistema. Qual dos compostos, A, B ou C, possui um metal alcalino em sua fórmula?
- **b)** Identifique o composto C. Escreva a fórmula do ácido que, quando sofre decomposição, forma o gás responsável pela efervescência observada na reação desse composto com o $HC\ell$.

Resolução:

a) De acordo com a tabela fornecida no enunciado da questão, vem:

Classificação da mistura formada pelos compostos A e B após a filtração 1 e antes do resfriamento do sistema: mistura homogênea, pois os dois compostos (KNO₃ e PbI₂) são solúveis em água quente.

O KNO₃ possui um metal alcalino em sua fórmula, ou seja, possui o potássio (K; grupo 1 ou família IA).

b) Composto C: CaCO₃, pois é insolúvel em água quente.

Fórmula do ácido que, quando sofre decomposição, forma CO₂: H₂CO₃.

Observe:

$$\begin{aligned} & \operatorname{CaCO}_3 \ + \ 2\operatorname{HC}\ell \longrightarrow \left\langle \operatorname{H}_2\operatorname{CO}_3 \right\rangle + \operatorname{CaC}\ell_2 \\ & \operatorname{H}_2\operatorname{CO}_3 \longrightarrow \ \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2 \end{aligned}$$

02. Um procedimento comum de adulteração de combustíveis é a adição de excesso de etanol à gasolina. Para verificar a ocorrência dessa adulteração, utiliza-se uma solução saturada de cloreto de sódio (NaC ℓ , solubilidade em água a 25 °C = 36 g/100 g H₂O) que, quando adicionada à mistura etanol/gasolina, extrai o etanol da gasolina. As fórmulas do etanol e do isoctano (principal componente da gasolina) estão representadas a seguir.

- **a)** Calcule a massa de cloreto de sódio necessária para saturar 500 g de água, a 25 °C. O que acontece com a temperatura de ebulição da água quando a ela se adiciona cloreto de sódio?
- **b)** Qual o nome da ligação intermolecular que se estabelece entre as moléculas de etanol e de água? Explique, com base na polaridade de moléculas, por que a água extrai o etanol da gasolina.

Resolução:

a) Cálculo da massa de cloreto de sódio (NaCl) necessária para saturar 500 g de água, a 25 °C:

$$\begin{split} S_{(NaC\ell;\ 25\ ^{\circ}C)} &= \frac{36\ g}{100\ g\ H_2O} \\ 36\ g\ (NaC\ell) &------ 100\ g\ (H_2O) \\ & m_{NaC\ell} &------ 500\ g\ (H_2O) \\ m_{NaC\ell} &= \frac{36\ g \times 500\ g}{100\ g} \\ m_{NaC\ell} &= 180\ g \end{split}$$

Quando se adiciona cloreto de sódio $\left(\text{NaC}\ell \to \text{Na}^+ + \text{C}\ell^- \right)$ à água, a temperatura de ebulição aumenta (efeito ebulioscópico). Pois, quanto maior a quantidade de partículas de soluto em solução, maior a temperatura de ebulição.

b) Nome da ligação intermolecular que se estabelece entre as moléculas de etanol e de água: ligações de hidrogênio ou pontes de hidrogênio.

A água extrai o etanol da gasolina devido à atração intermolecular, já que a água é polar e a hidroxila do etanol também.

03. A conversão de gás carbônico (CO₂) em compostos de interesse da indústria é uma maneira eficiente de minimizar os impactos ambientais decorrentes da emissão desse gás. A reação do CO₂ com etano (C₂H₆) pode produzir gás de síntese (mistura utilizada na indústria) conforme a equação:

$$C_2H_6 + 2CO_2 \longrightarrow 4CO + 3H_2$$
 $\Delta H = 430 \text{ kJ/mol de } C_2H_6$

- a) A que função inorgânica pertence à substância composta formada nessa reação? Qual o principal impacto da emissão de CO₂ na atmosfera?
- **b)** Classifique a reação em relação à energia liberada ou absorvida. Considerando que a entalpia padrão de formação do CO seja -110 kJ/mol e que a do CO₂ seja -394 kJ/mol, calcule a entalpia padrão de formação do etano.

Resolução:

a) Função inorgânica do CO: óxido.

$$C_2H_6 + 2CO_2 \longrightarrow \underbrace{4\overset{+2}{C}\overset{-2}{O}}_{\substack{\text{Substância} \\ \text{formada} \\ \text{(6xido)}}} + 3H_2$$

Principal impacto da emissão de CO₂ na atmosfera: efeito estufa.

b) Classificação da reação em relação à energia: reação endotérmica, pois apresenta variação de entalpia positiva ($\Delta H > 0$), ou seja, absorve calor.

$$1C_2H_6 + 2CO_2 \xrightarrow{\text{endotérmica}} 4CO + 3H_2; \ \Delta H = +430 \ \text{kJ} > 0 \ \text{kJ}$$

Cálculo da entalpia padrão de formação do etano (C₂H₆):

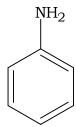
$$\underbrace{1C_{2}H_{6}}_{H_{f}} + \underbrace{2CO_{2}}_{2\times(-394~kJ)} \longrightarrow \underbrace{4CO}_{4\times(-110~kJ)} + \underbrace{3H_{2}}_{3\times0~kJ} \quad \Delta H = +430~kJ$$

$$\Delta H = H_{produtos} - H_{reagentes}$$

$$+430 \text{ kJ} = [4 \times (-110 \text{ kJ}) + 3 \times 0 \text{ kJ}] - [H_f + 2 \times (-394 \text{ kJ})]$$

$$+430 \text{ kJ} = -440 \text{ kJ} - \text{H}_{\text{f}} + 788 \text{ kJ}$$

$$H_f = -430 \text{ kJ} - 440 \text{ kJ} + 788 \text{ kJ}$$

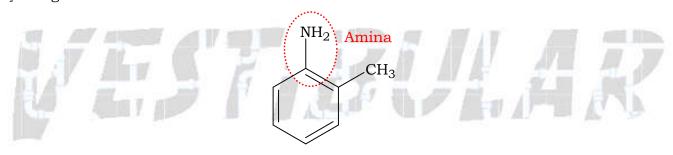

$$H_f = -82 \text{ kJ/mol}$$

04. A orto-tolidina (C_7H_9N ; M=107 g/mol), composto orgânico utilizado para a análise do cloro livre disponível na água tratada para o consumo humano ou para atividades esportivas, apresenta fórmula estrutural constituída por um anel benzênico que apresenta um radical metil (CH_3) na posição orto em relação ao grupo funcional. Quando a orto-tolidina reage com oxidantes, como o gás cloro ($C\ell_2$; M=71 g/mol), produz uma substância de tonalidade amarelada, que fica mais escura conforme a concentração de oxidante aumenta.

$$2C_7H_9N + C\ell_2 \longrightarrow 2C_7H_8N + 2C\ell^- + 2H^+$$
 orto – tolidina substância amarela

a) Complete a fórmula estrutural da orto-tolidina presente no campo de Resolução e Resposta. A qual função orgânica pertence a orto-tolidina?

Campo de Resolução e Resposta:


b) O que acontece com o pH de uma solução de orto-tolidina quando gás cloro é borbulhado nela? Calcule a massa de cloro, em gramas, necessária para reagir com 53,5 g de orto-tolidina.

Resolução:

a) De acordo com o texto do enunciado, a fórmula estrutural da orto-tolidina é constituída por um anel benzênico e apresenta um radical metil (CH₃) na posição orto em relação ao grupo funcional:

Campo de Resolução e Resposta:

Função orgânica da orto-tolidina: amina.

b) Quando gás cloro é borbulhado à solução de orto-tolidina, íons H⁺ são formados, ou seja, aumenta a concentração de cátions H⁺ e o pH diminui.

$$2C_7H_9N + \underbrace{C\ell_2}_{\substack{\text{A umento de concentração}}} \xrightarrow{\substack{\text{Deslocamento para a direita}\\\text{evaluation}}} 2C_7H_8N + 2C\ell^- + \underbrace{2H^+}_{\substack{\text{pH diminui}}}$$

Cálculo da massa de cloro $(C\ell_2)$, em gramas, necessária para reagir com 53,5 g de orto-tolidina:

Dados: C_7H_9N ; M = 107 g/mol e $C\ell_2$; M = 71 g/mol.

PROFESSORA SONIA

$$\begin{split} 2C_7 H_9 N &+ 1C\ell_2 \longrightarrow 2C_7 H_8 N + 2C\ell^- + 2H^+ \\ 2\times 107 \text{ g} &--- 71 \text{ g} \\ 53,5 \text{ g} &--- m_{C\ell_2} \\ m_{C\ell_2} &= \frac{53,5 \text{ g} \times 71 \text{ g}}{2\times 107 \text{ g}} \\ m_{C\ell_2} &= 17,75 \text{ g} \end{split}$$

Dados:

CLASSIFICAÇÃO PERIODICA						

1																	18
1 H hidrogênio 1,01	2											13	14	15	16	17	2 He hélio 4,00
3 Li Iltio 6,94	4 Be berilio 9,01											5 B boro 10,8	6 C carbono 12,0	7 N nitrogênio 14,0	8 O oxigênio 16,0	9 F flúor 19,0	10 Ne nečnio 20,2
11 Na sódio 23,0	12 Mg magnésio 24,3	3	4	5	6	7	8	9	10	11	12	13 Al alumínio 27,0	14 Si silicio 28,1	15 P fósforo 31,0	16 S enxofre 32,1	17 CI cloro 35,5	18 Ar argónio 40,0
19 K potássio 39,1	20 Ca cálcio 40,1	21 Sc escândio 45,0	22 Ti titânio 47,9	23 V vanádio 50,9	24 Cr crômio 52,0	25 Mn manganês 54,9	26 Fe ferro 55,8	27 Co cobalto 58,9	28 Ni niquel 58,7	29 Cu cobre 63,5	30 Zn zinco 65,4	31 Ga gálio 69,7	32 Ge germânio 72,6	33 As arsênio 74,9	34 Se selênio 79,0	35 Br bromo 79,9	36 Kr criptônio 83,8
37 Rb rubidio 85,5	38 Sr estrêncio 87,6	39 Y itrio 88,9	40 Zr zircônio 91,2	41 Nb nióbio 92,9	42 Mo molibděnio 96,0	43 Tc tecnécio	44 Ru rutênio 101	45 Rh ródio 103	46 Pd paládio 106	47 Ag prete 108	48 Cd cádmio 112	49 In Indio 115	50 Sn estanho 119	51 Sb antimônio 122	52 Te telúrio 128	53 I iodo 127	54 Xe xenônio 131
55 Cs césio 133	56 Ba bário 137	57-71 lantanoides	72 Hf háfnio 178	73 Ta tántalo 181	74 W tungstênio 184	75 Re rênio 186	76 Os ósmio 190	77 Ir iridio 192	78 Pt platina 195	79 Au ouro 197	80 Hg mercúrio 201	81 TI tálio 204	82 Pb chumbo 207	83 Bi bismuto 209	84 Po polônio	85 At astato	86 Rn radônio
87 Fr frâncio	88 Ra rádio	89-103 actinoides	104 Rf rutherfordio	105 Db dúbnio	106 Sg seabórgio	107 Bh bóhrío	108 Hs hássio	109 Mt meitnério	110 Ds darmstádio	111 Rg roentgênio	112 Cn copernício	113 Nh nihônio	114 FI fleróvio	115 Mc moscóvio	116 Lv Iivermório	117 Ts tenessino	118 Og oganessôn

númer	o atômico
Sir	nbolo
n	ome
massa	a atômica

57 La lantânio 139	58 Ce cério 140	59 Pr praseodimio 141	60 Nd neodimio 144	61 Pm promécio	62 Sm samário 150	63 Eu európio 152	64 Gd gadolinio 157	65 Tb térbio 159	66 Dy disprósio 163	67 Ho hálmio 165	68 Er érbio 167	69 Tm túlio 169	70 Yb itérbio 173	71 Lu lutécio 175
89 Ac actínio	90 Th tório 232	91 Pa protactinio 231	92 U urânio 238	93 Np neptúnio	94 Pu plutônio	95 Am americio	96 Cm cúrio	97 Bk berquélio	98 Cf califórnio	99 Es einstênio	100 Fm férmio	101 Md mendelévio	102 No nobélio	103 Lr laurêncio

Notas: Os valores de massas atômicas estão apresentados com três algarismos significativos. Não foram atribuídos valores às massas atômicas de elementos artificiais ou que tenham abundância pouco significativa na natureza. Informações adaptadas da tabela IUPAC 2016.