Universidades São Judas e Anhembi Morumbi 2024 - MEDICINA

PROVA DE CONHECIMENTOS ESPECÍFICOS

Questão 1. O quadro apresenta um comparativo de vantagens e desvantagens da produção de energia elétrica entre três diferentes tipos de usinas:

Usina	Hidroelétrica	Termoelétrica	Nuclear			
Matéria prima	Água (H ₂ O)	Metano (CH ₄)	Urânio-235 (²³⁵ U)			
Modo de produção	Conversão de energia mecânica em energia elétrica	Queima de combustível fóssil	Fissão nuclear			
Emissões para a atmosfera	Metano (CH ₄)	Dióxido de carbono (CO ₂)	Nenhuma			
Resíduos sólidos			Elemento combustível			
gerados na operação da usina	Nenhum	Nenhum	irradiado (resíduos contendo material radioativo)			

Apesar de a usina hidroelétrica não envolver reações químicas para a geração de energia, a decomposição de matéria orgânica nas áreas inundadas pode gerar emissões de até 48 kg de metano por metro quadrado por dia. Já as usinas termoelétrica e nuclear dependem dos seguintes fenômenos:

- Usina termoelétrica: combustão do metano;
- Usina nuclear: bombardeamento do 235 U por um nêutron $\binom{1}{0}$ n), com produção de 92 Kr, 141 Ba e x nêutrons.
- a) Qual das usinas apresentadas no quadro utiliza recurso natural renovável? Calcule a quantidade de matéria, em mol, de CH_4 (M=16 g/mol) produzida por metro quadrado por uma usina hidroelétrica.
- **b)** Escreva a equação balanceada da reação utilizada na produção de energia em uma usina termoelétrica. Determine o número de nêutrons (x) produzido na fissão de um átomo de ²³⁵U.

Resolução:

a) Usina apresentada no quadro que utiliza recurso natural renovável: hidroelétrica (a água é um recurso recuperado em seu ciclo natural).

De acordo com o texto do enunciado, a decomposição de matéria orgânica nas áreas inundadas pode gerar emissões de até 48 kg de metano por metro quadrado por dia.

Cálculo da quantidade de matéria em mol por metro quadrado:

$$\begin{split} m_{CH_4} &= 48 \text{ kg} = 48000 \text{ g}; \ M_{CH_4} = 16 \text{ g} \cdot \text{mol}^{-1} \\ n_{CH_4} &= \frac{m_{CH_4}}{M_{CH_4}} \implies n_{CH_4} = \frac{48000 \text{ g}}{16 \text{ g} \cdot \text{mol}^{-1}} \\ n_{CH_4} &= 3000 \text{ mol} \end{split}$$

b) Equação balanceada da reação utilizada na produção de energia em uma usina termoelétrica que utiliza metano como matéria prima: $1\text{CH}_4 + 2\text{O}_2 \xrightarrow{\text{Combustão completa}} 1\text{CO}_2 + 2\text{H}_2\text{O}$.

Determinação do número de nêutrons (x) produzido na fissão de um átomo de 235 U: de acordo com o enunciado, o bombardeamento do 235 U por um nêutron $\binom{1}{0}$ n), ocorre com produção de 92 Kr, 141 Ba e x nêutrons.

35
U + $^{1}_{0}$ n \longrightarrow 92 Kr + 141 Ba + $x\binom{1}{0}$ n + Energia
 $^{235+1=92+141+x\times1}$
 $^{236-92-141=x} \Rightarrow x=3$
 35 U + $^{1}_{0}$ n \longrightarrow 92 Kr + 141 Ba + $^{1}_{0}$ n + Energia

Questão 2. Em um experimento para estimar o teor de ácido cítrico (C₃H₅O(COOH)₃; M = 192 g/mol) em um suco de limão, realizou-se uma titulação do suco com hidróxido de sódio (NaOH) padronizado de concentração 0,1 mol/L. Uma amostra de 5 mL de suco de limão foi colocada em um erlenmeyer, em que também foram adicionadas gotas do indicador fenolftaleína e 20 mL de água. Uma bureta foi carregada com solução de NaOH 0,1 mol/L, que foi gotejada sobre o conteúdo do erlenmeyer até que fosse verificada a mudança de cor do sistema de incolor para rosa. O volume de NaOH consumido na neutralização total dos átomos de hidrogênio ionizáveis do ácido cítrico contido no suco de limão foi de 5,4 mL.

A equação que representa o processo de equilíbrio entre as estruturas da fenolftaleína responsáveis pela mudança de cor observada na titulação está representada a seguir:

ESTRUTURA 1 ESTRUTURA 2
$$OH + H_2O$$
 $OH + H_3O^+$

- **a)** Qual estrutura, 1 ou 2, é responsável pela mudança de cor da fenolftaleína ao final da titulação? Justifique sua resposta com base no Princípio de Le Châtelier.
- **b)** Escreva a equação balanceada da reação que representa a neutralização total do ácido cítrico pela solução de hidróxido de sódio. Considerando a densidade do suco de limão igual a 1,0 g/mL, calcule a porcentagem em massa de ácido cítrico na amostra de suco de limão analisada.

Resolução:

a) A estrutura 2 é responsável pela mudança de cor da fenolftaleína, pois com a adição de NaOH, os íons H₃O⁺ (H⁺) são consumidos e o equilíbrio desloca para a direita no sentido de sua reposição.

Observação teórica:

b) Equação balanceada da reação que representa a neutralização total do ácido cítrico pela solução de hidróxido de sódio:

$$\underbrace{1C_{3}H_{5}O(COOH)_{3}}_{\text{Acido cítrico}} + 3NaOH \xrightarrow{Neutralização} 3 H_{2}O + 1C_{3}H_{5}O(COONa)_{3}$$

Cálculo da porcentagem em massa de ácido cítrico na amostra de suco de limão analisada:

$$\begin{split} &[\text{NaOH}] = 0,1 \text{ mol} \cdot L^{-1} \\ &V_{solução \text{ de NaOH}} = 5,4 \text{ mL} = 5,4 \times 10^{-3} \text{ L} \\ &[\text{NaOH}] = \frac{n_{\text{NaOH}}}{V_{solução \text{ de NaOH}}} \implies n_{\text{NaOH}} = [\text{NaOH}] \times V_{solução \text{ de NaOH}} \\ &n_{\text{NaOH}} = 0,1 \text{ mol} \cdot L^{-1} \times 5,4 \times 10^{-3} \text{ L} = 5,4 \times 10^{-4} \text{ mol} \end{split}$$

Questão 3. Uma liga de amálgama é constituída pelos metais indicados na tabela, na qual são fornecidos seus respectivos potenciais de redução.

Metal	Composição percentual	Equação de redução					
Hg (M = 201 g/mol)	43,16 %	$Hg^{2+} + 2e^{-} \longrightarrow Hg$	$E^{\circ} = + 0.85 \text{ V}$				
Ag (M = 108 g/mol)	35,84 %	$Ag^+ + e^- \longrightarrow Ag$	$E^{\circ} = + 0.80 \text{ V}$				
Cu (M = 63,5 g/mol)	4,76 %	$Cu^{2+} + 2e^{-} \longrightarrow Cu$	$E^{o} = + 0.34 \text{ V}$				
Sn (M = 119 g/mol)	7,14 %	$\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn}$	$E^{\circ} = -0.14 \text{ V}$				
Zn (M = 65 g/mol)	9,10 %	$Zn^{2+} + 2e^{-} \longrightarrow Zn$	$E^{\circ} = -0.76 \text{ V}$				

Em um experimento, 100 g de amálgama finamente dividido e com a composição indicada na tabela foram colocados em um béquer contendo 1 L de solução de ácido clorídrico ($HC\ell$) em excesso, verificando-se que alguns dos metais presentes no amálgama reagiram com o $HC\ell$ e que houve a formação de bolhas de gás. Após o término da reação, o resíduo metálico foi retirado da solução e pesado em uma balança.

a) Determine o número de camadas eletrônicas existentes no átomo presente no amálgama que possui o maior raio atômico. Qual o nome do gás formado na reação entre o $HC\ell$ e os metais que compõem o amálgama?

b) Considerando o potencial de redução do íon H⁺ igual a 0,00 V, quais dos metais presentes na liga de amálgama deverão ser consumidos pelo HC ℓ ? Calcule a massa do resíduo metálico existente após o término da reação.

Resolução:

a) Átomo presente no amálgama que possui o maior raio atômico e, consequentemente o maior número de camadas: Hg (mercúrio). O número de camadas é seis (6).

O número do período coincide com a quantidade de camadas (no estado fundamental).

De acordo com a tabela periódica fornecida na prova, vem:

Metal	Posição na Tabela Periódica	Número de camadas
Hg	Grupo 12; sexto período	6
Ag	Grupo 11; quinto período	5
Cu	Grupo 11; quarto período	4
Sn	Grupo 14; quinto período	5
Zn	Grupo 12; quarto período	4
		1

Nome do gás formado na reação entre o HCl: gás hidrogênio (H2).

b) Considerando o potencial de redução do íon H⁺ igual a 0,00 V, os metais presentes na liga de amálgama que deverão ser consumidos pelo HCℓ devem apresentar potencial de redução menor do que 0,00 V. Neste caso, o estanho (Sn) e o zinco (Zn).

$Hg^{2+} + 2e^{-} \longrightarrow Hg$	E° = + 0,85 V > 0,00 V
$Ag^+ + e^- \longrightarrow Ag$	$E^{o} = + 0.80 \text{ V} > 0.00 \text{ V}$
$Cu^{2+} + 2e^{-} \longrightarrow Cu$	$E^{o} = + 0.34 \text{ V} > 0.00 \text{ V}$
$\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn}$	$E^{o} = -0.14 \text{ V} < 0.00 \text{ V}$
$Zn^{2+} + 2e^{-} \longrightarrow Zn$	$E^{\circ} = -0.76 \text{ V} < 0.00 \text{ V}$

Cálculo da massa do resíduo metálico existente após o término da reação:

$$m_{total}$$
 = 100 g \Rightarrow 100 %

$$m_{Sn}$$
 = 7,14 g \Rightarrow 7,14 %

$$m_{Zn} = 9,10 \text{ g} \Rightarrow 9,10 \%$$

Sn e Zn são consumidos (potencial de redução < 0,00~V)

$$m_{residuo\ metálico} = m_{total} - (m_{Sn} + m_{Zn})$$

$$m_{res\'iduo\ met\'alico}=100\ g-(7,14\ g+9,10\ g)$$

$$m_{residuo\ metálico} = 83,76\ g$$

PROFESSORA SONIA

Questão 4. Medicamentos, quando administrados, podem ser absorvidos tanto no estômago como no intestino, dependendo do efeito da acidez estomacal causado sobre eles. A velocidade com que um medicamento é absorvido influencia sua biodisponibilidade, sendo que alguns medicamentos devem passar pelo estômago sem sofrer ataque do suco gástrico, para serem absorvidos no intestino. Nesse caso, os medicamentos devem ser envolvidos por um revestimento que não seja afetado por ácidos. Dentre as matérias primas utilizadas nesses revestimentos, destaca-se a tapioca, que tem a vantagem de não conter glúten em sua composição. Um dos produtos formados na digestão do glúten, responsável por problemas causados em pessoas sensíveis a ele, é a exorfina B5, cuja fórmula estrutural é apresentada na figura.

- **a)** A trituração de um comprimido contendo um medicamento absorvido no estômago aumenta, diminui ou não afeta a biodisponibilidade desse medicamento para o organismo? Justifique sua resposta com base na teoria das colisões efetivas.
- **b)** A qual grupo de biomoléculas (carboidratos, lipídeos ou peptídeos) pertence a molécula da exorfina B5? Quantos carbonos assimétricos existem na molécula da endorfina B5 apresentada na figura?

Resolução:

- **a)** A trituração de um comprimido contendo um medicamento absorvido no estômago aumenta a biodisponibilidade desse medicamento para o organismo. Pois, a superfície de contato aumenta e, consequentemente, a quantidade de choques frontais ou efetivos entre as espécies químicas.
- **b)** Grupo de biomoléculas a qual pertence a molécula da exorfina B5: peptídeos, devido à presença de ligações peptídicas ou grupos amida (ligações amídicas).

Quantidade de carbonos assimétricos (*átomo de carbono ligado a quatro ligantes diferentes entre si) existentes na molécula da endorfina B5: três (3).

Dados:

1						CL	ASSIFIC	CAÇÃO	PERIÓD	ICA							18
1 H hidrogênio 1,01	2											13	14	15	16	17	2 He helio 4,00
3 Li litio 6,94	4 Be berilio 9,01											5 B boro 10,8	6 C carbono 12,0	7 N nitrogênio 14,0	8 O oxigênio 16,0	9 F flúor 19,0	10 Ne neônio 20,2
11 Na sódio 23,0	12 Mg magnésio 24,3	3	4	5	6	7	8	9	10	11	12	13 Al atuminio 27,0	14 Si silicio 28,1	15 P fósforo 31,0	16 S enxofre 32,1	17 CI cloro 35,5	18 Ar argônio 40,0
19 K potássio 39,1	20 Ca cálcio 40,1	21 Sc escândio 45,0	22 Ti titânio 47,9	23 V vanádio 50,9	24 Cr crômio 52,0	25 Mn manganés 54,9	26 Fe ferro 55,8	27 Co cobalto 58,9	28 Ni niquel 58,7	29 Cu cobre 63,5	30 Zn zinco 65,4	31 Ga gálio 69,7	32 Ge germânio 72,6	33 As arsênio 74,9	34 Se selénio 79,0	35 Br bromo 79,9	36 Kr criptônio 83,8
37 Rb rubídio 85,5	38 Sr estrôncio 87,6	39 Y itrio 88,9	40 Zr zircônio 91,2	41 Nb nióbio 92,9	42 Mo molibděnio 96,0	43 Tc tecnécio	44 Ru rutênio 101	45 Rh ródio 103	46 Pd paládio 106	47 Ag prata 108	48 Cd cádmio 112	49 In Indio 115	50 Sn estanho 119	51 Sb antimônio 122	52 Te telúrio 128	53 I lodo 127	54 Xe xenônio 131
55 Cs césio 133	56 Ba bário 137	57-71 lantanoides	72 Hf háfnio 178	73 Ta tântalo 181	74 W tungstěnio 184	75 Re rēnio 186	76 Os ósmio 190	77 Ir iridio 192	78 Pt platina 195	79 Au ouro 197	80 Hg mercúrio 201	81 TI tálio 204	82 Pb chumbo 207	83 Bi bismuto 209	84 Po polônio	85 At astato	86 Rn radônio
87 Fr frâncio	88 Ra rádio	89-103 actinoides	104 Rf rutherfórdio	105 Db dúbnio	106 Sg seaborgio	107 Bh böhrio	108 Hs hássio	109 Mt meitnério	110 Ds darmstádio	111 Rg roentgênio	112 Cn copernicio	113 Nh nihônio	114 FI fleróvio	115 Mc moscóvio	116 Lv livermório	117 Ts tenessino	118 Og oganessôni
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
número atômico Símbolo		ico	La lantânio 139	Ce cério 140	Pr praseodimio 141	Nd neodimio 144	Pm promécio	Sm samário 150	Eu európio 152	Gd gadotinio 157	Tb térbio 159	Dy disprésio 163	Ho hólmio 165	Er érbio 167	Tm túlio 169	Yb itérbio 173	Lu lutécio 175
m	nome assa atômi	ca	89 Ac actinio	90 Th torio	91 Pa protactinio	92 U uránio	93 Np neptúnio	94 Pu plutônio	95 Am americio	96 Cm cúrio	97 Bk berquélio	98 Cf califórnio	99 Es einstênio	100 Fm férmio	101 Md mendelévio	102 No nobelio	103 Lr laurêncio

Notas: Os valores de massas atômicas estão apresentados com três algarismos significativos. Não foram atribuídos valores às massas atômicas de elementos artificiais ou que tenham abundância pouco significativa na natureza. Informações adaptadas da tabela IUPAC 2016.