ITA 2012

DADOS EVENTUALMENTE NECESSÁRIOS

CONSTANTES

Constante de Avogadro = $6,02 \times 10^{23}$ mol⁻¹

Constante de Faraday (F) = 9.65×10^4 C.mol⁻¹ = 9.65×10^4 A.s.mol⁻¹ = 9.65×10^4 J.V⁻¹.mol⁻¹ Volume molar de gás ideal = 22.4 L (CNTP)

Carga elementar = $1,602 \times 10^{-19}$ C

Constante dos gases (R) = 8.21×10^{-2} atm.L.K⁻¹.mol⁻¹; (R) = 8.31 J.K⁻¹.mol⁻¹;

 $(R) = 1,98 \text{ cal.mol}^{-1}.\text{K}^{-1}; (R) = 62,4 \text{ mmHg.L.K}^{-1}.\text{mol}^{-1}.$

Constante gravitacional = 9.81 m.s^{-2}

DEFINIÇÕES

Pressão de 1 atm = 760 mmHg = $101325 \text{ N.m}^{-2} = 760 \text{ Torr}$ 1 J = $1 \text{ N.m} = 1 \text{ kg.m}^2.\text{s}^{-2}$

Condições normais de temperatura e pressão (CNTP): 0 °C e 760 mmHg.

Condições ambientes: 25 °C e 1 atm.

Condições – padrão: 25 °C, 1 atm, concentrações das soluções: 1 mol.L⁻¹ (rigorosamente: atividade unitária das espécies), sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido cristalino; (ℓ) = líquido; (g) = gás; (aq) = aquoso; (CM) = Circuito Metálico; (conc) = concentrado; (ua) = unidades arbitrárias;

[A] = concentração da espécie química A em mol.L⁻¹.

Elemento químico	Número atômico	Massa molar (g.mol ⁻¹)
Н	1	1,01
Li	3	6,94
C	6	12,01
N	7	14,01
O	8	16,00
F	9	19,00
Ne	10	20,18
Na	11	22,99
Mg	12	24,30
$\mathbf{A}\ell$	13	26,98
Si	14	28,08
P	15	30,97
S	16	32,06
$\mathbf{C}\ell$	17	35,45
K	19	39,10
Ca	20	40,08
Mn	25	54,94
As	33	74,92
Br	35	79,90
Ag	47	107,90
I	53	126,90
Pt	78	195,08
Hg	80	200,59

QUESTÃO 1. Uma amostra de 2×10^{-2} g de um determinado composto orgânico é dissolvida em 300 mL de água a 25 °C, resultando numa solução de pressão osmótica 0,027 atm. Pode-se afirmar, então, que o composto orgânico é o(a)

- A () ácido etanoico (ácido acético).
- B () 1,2-etanodiol (etileno glicol).
- C () etanol (álcool etílico).
- D () metanodiamida (ureia).
- E () tri-fluor-carbono.

Resolução: Alternativa D

Para descobrir o composto orgânico precisamos calcular as concentrações das substâncias dissolvidas.

$$\mathfrak{M} \text{ (concentração molar)} = \frac{\text{n (número de mols)}}{\text{V(volume)}} \Rightarrow \mathfrak{M}_{\text{soluto}} = \frac{\text{m}_{\text{soluto}}}{\text{M}_{\text{soluto}} \times \text{V}}$$

$$\mathfrak{M}_{\text{ ácido acético}} = \frac{2 \times 10^{-2} \text{ g}}{60,06 \text{ g.mol}^{-1} \times 0,3 \text{ L}} = 1,11 \times 10^{-3} \text{ mol/L}$$

$$\mathfrak{M}_{\rm \ etileno \ glicol} = \frac{2 \times 10^{-2} \ g}{62,08 \ g.mol^{-1} \times 0,3 \ L} = 1,07 \times 10^{-3} \ mol \ / \ L$$

$$\mathfrak{M}_{e \, tan \, ol} = \frac{2 \times 10^{-2} \, g}{46,08 \, g.mol^{-1} \times 0,3 \, L} = 1,44 \times 10^{-3} \, mol \, / \, L$$

$$\mathfrak{M}_{\rm ureia} = \frac{2 \times 10^{-2} \ g}{60,07 \ g.mol^{-1} \times 0,3 \ L} = 1,11 \times 10^{-3} \ mol \ / \ L$$

$$\mathfrak{M}_{\text{tri-fluor-carbono}} = \frac{2 \times 10^{-2} \text{ g}}{70,02 \text{ g.mol}^{-1} \times 0.3 \text{ L}} = 9,52 \times 10^{-3} \text{ mol/L}$$

Sabemos que:

$$\pi \times V = n \times R \times T$$

$$\pi = \frac{n}{V} \times R \times T$$

$$\pi = \mathfrak{M} \times R \times T$$

Então:

$$\pi = \mathfrak{M} \times R \times T$$

$$\mathfrak{M} = \frac{\pi}{R \times T}$$

$$\mathfrak{M} = \frac{0,027 \text{ atm}}{8,21 \times 10^{-2} \text{atm.L.mol}^{-1}.\text{K}^{-1} \times 298 \text{ K}}$$

$$\mathfrak{M} = 1{,}104 \times 10^{-3} \text{ mol / L}$$

O ácido acético e a ureia apresentam concentrações molares de 1,11×10⁻³ mol/L. Mas o ácido acético sofre ionização em pequena escala, logo o composto orgânico é a metanodiamida (ureia).

QUESTÃO 2. Considere as seguintes afirmações:

- I. Aldeídos podem ser oxidados a ácidos carboxílicos.
- II. Alcanos reagem com haletos de hidrogênio.
- III. Aminas formam sais quando reagem com ácidos.
- IV. Alcenos reagem com alcoóis para formar ésteres.

Das afirmações acima, está(ão) CORRETA(S) apenas

- A () I.
- B () I e III.
- C () II.
- D () II e IV.
- E () IV.

Resolução: Alternativa B

Análise das afirmações:

I. Correta. Aldeídos podem ser oxidados a ácidos carboxílicos.

$$R - C + [O] \longrightarrow R - C OH$$

II. Incorreta. Alcanos sofrem reações de substituição e reagem com F_2 , $C\ell_2$, Br_2 e I_2 (X_2) formando haletos de hidrogênio (HX).

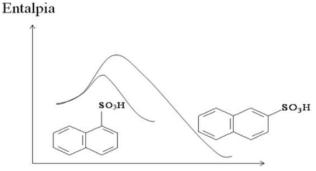
$$H_3C$$
— CH_3 + X_2 — HX + H_2C — CH_3

III. Correta. Aminas formam sais quando reagem com ácidos.

$$R \longrightarrow NH_2 + HX \longrightarrow R \longrightarrow NH_3^+X^-$$

IV. Incorreta. Alcenos sofrem reações de adição:

Ésteres são formados pela reação de um ácido com um álcool.


QUESTÃO 3. A reação de sulfonação do naftaleno ocorre por substituição eletrofilica nas posições α e β do composto orgânico, de acordo com o diagrama de coordenada de reação a 50 °C.

Com base neste diagrama, são feitas as seguintes afirmações:

I. A reação de sulfonação do naftaleno é endotérmica.

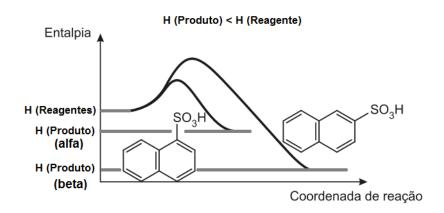
II. A posição α do naftaleno é mais reativa do que a de β .

III. O isômero β é mais estável que o isômero $\alpha\,.$

Coordenada de reação

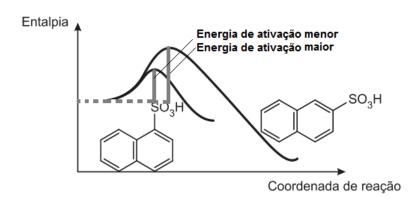
Das afirmações acima, está(ão) CORRETA(S) apenas

A () I.

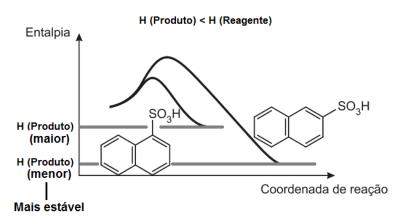

B () 1

D () II e III.

E () III.


Resolução: Alternativa D

I. Incorreta. A reação de sulfonação do naftaleno é exotérmica (libera calor), pois a entalpia dos produtos é menor do que a dos reagentes.


II. Correta. A posição α do naftaleno é mais reativa do que a de β .

Verifica-se, na figura, que a energia de ativação da reação de substituição do naftaleno na posição alfa é menor do que na posição beta. Conclui-se que a posição alfa é mais reativa.

III. Correta. O isômero β é mais estável que o isômero α .

Como o isômero beta apresenta menor entalpia, é mais estável.

QUESTÃO 4. Assinale a opção que corresponde, aproximadamente, ao produto de solubilidade do $AgC\ell(s)$ em água nas condições-padrão, sendo dados:

 $Ag^{\scriptscriptstyle +}(aq) + e^{\scriptscriptstyle -} \longleftarrow Ag(c); \quad E^{\scriptscriptstyle 0} = 0,799 \ V \quad e \quad AgC\ell(c) + e^{\scriptscriptstyle -} \longleftarrow Ag(c) \ + \ C\ell^{\scriptscriptstyle -}(aq); \quad E^{\scriptscriptstyle 0} = 0,222 \ V \ ,$

em que E° é o potencial do eletrodo em relação ao eletrodo padrão de hidrogênio nas condições-padrão.

- A () 1×10^{-18}
- B () 1×10^{-10}
- $C () 1 \times 10^{-5}$
- D () 1×10^5
- $E () 1 \times 10^{10}$

Resolução: Alternativa B

Neste caso deve-se aplicar a equação de Nernst:

$$\Delta E = \Delta E^{\circ} - \frac{0.059}{n} \times \log Q$$
; onde $n = 1$ mol.

$$0 = \Delta E^{\circ} - 0.059 \times log \, K_{PS}$$

Cálculo da variação de potencial:

$$Ag^{\scriptscriptstyle +}(aq) \ + \ e^{\scriptscriptstyle -} {\ \longleftarrow \ } \ Ag(c); \quad \ E^o = 0,799 \ V$$

$$AgC\ell(c) + e^- \iff Ag(c) + C\ell^-(aq); \quad E^\circ = 0,222 \text{ V}$$

Então:

$$Ag(c) \longrightarrow Ag^{+}(aq) + e^{-};$$
 $E^{\circ} = -0.799 \text{ V}$

$$AgC\ell(c) + e^- \longrightarrow Ag(c) + C\ell^-(aq); \quad E^o = 0,222 \text{ V}$$

$$\frac{g(c) + Ag(c) \xrightarrow{\text{Global}} Ag^{+}(aq) + C\ell^{-}(aq)}{Ag(c) + Ag(c) \xrightarrow{\text{Global}} Ag^{+}(aq) + C\ell^{-}(aq)}$$

$$\Delta E = -0,799 + 0,222 = -0,577 \ V$$

$$0 = \Delta E^{\circ} - 0.059 \times \log K_{PS}$$

$$0 = -0,577 - 0,059 \times log\,K_{PS}$$

$$\frac{+0,577}{-0,059} = \log K_{PS} \Rightarrow -9,779 = \log K_{PS}$$

Arredondando ($-9,779 \approx -10$), vem:

$$-10 = log K_{PS} \Rightarrow K_{PS} = 10^{-10}$$

$$K_{PS} = 1 \times 10^{-10}$$

QUESTÃO 5. Considere as seguintes misturas (soluto/solvente) na concentração de 10 % em mol de soluto:

- I. acetona/clorofórmio
- II. água/etanol
- III. água/metanol
- IV. benzeno/tolueno
- V. *n*-hexano/*n*-heptano

Assinale a opção que apresenta a(s) mistura(s) para a(s) qual(is) a pressão de vapor do solvente na mistura é aproximadamente igual à sua pressão de vapor quando puro multiplicada pela sua respectiva fração molar.

- A () Apenas I
- B () Apenas I, II e III
- C () Apenas II e III
- D () Apenas IV e V
- E () Apenas V

Resolução: Alternativa D

De acordo com a Lei de Raoult, no equilíbrio da fase líquida com a fase gasosa na forma de vapor, teremos a seguinte relação:

$$X = \frac{Press\~ao \ de \ vapor \ do \ solvente \ puro \ (P_{puro})}{Press\~ao \ de \ vapor \ do \ solvente \ na \ soluç\~ao(P)}$$

$$P_{puro} = X \times P$$

Onde X é a fração molar do solvente na solução.

As intensidades das forças intermoleculares na substância pura e na mistura homogênea (solução) são praticamente iguais num sistema ideal.

Nas soluções IV e V as forças intermoleculares são do tipo dipolo-induzido (forças de Van der Waals), ou seja, são semelhantes nas substâncias puras e nas soluções. Consequentemente elas obedecem à Lei de Raoult.

QUESTÃO 6. Considere que a reação hipotética representada pela equação química $X + Y \longrightarrow Z$ ocorra em três condições diferentes $(a, b \in c)$, na mesma temperatura, pressão e composição total (número de moléculas de X + Y), a saber:

- a O número de moléculas de X é igual ao número de moléculas de Y.
- b O número de moléculas de X é 1/3 do número de moléculas de Y.
- c O número de moléculas de Y é 1/3 do número de moléculas de X.

Baseando nestas informações, considere que sejam feitas as seguintes afirmações:

- I. Se a lei de velocidade da reação for $v = k[X].[Y]^2$, então $v_c < v_a < v_b$.
- II. Se a lei de velocidade da reação for v = k[X].[Y], então $v_b = v_c < v_a$.

III. Se a lei de velocidade da reação for ()v = k[X], então $t_{1/2(c)} > t_{1/2(b)} > t_{1/2(a)}$, em que $t_{1/2} = tempo$ de meia – vida.

Das afirmações acima, está(ão) correta (s) apenas

- A () I.
- B () I e II.
- C () II.
- D () II e III.
- E () III.

Resolução: Alternativa B

- a) A partir das informações, teremos:
- n: número total de mols; $n_x = n_y$.

$$n = n_{_X} + n_{_X} \Rightarrow n = 2n_{_X} \Rightarrow n_{_X} = \frac{n}{2} \Rightarrow [X] = \frac{n}{2V}$$

$$n = n_{_{Y}} + n_{_{Y}} \Rightarrow n = 2n_{_{Y}} \Rightarrow n_{_{Y}} = \frac{n}{2} \Rightarrow [Y] = \frac{n}{2V}$$

- b) A partir das informações, teremos:
- $n = n_X + n_Y$

$$n_x = \frac{1}{3}n_y \Rightarrow n = \frac{1}{3}n_y + n_y = \frac{4}{3}n_y$$

$$n_{y} = \frac{3}{4}n \Rightarrow [y] = \frac{3}{4}\frac{n}{V}$$

$$n_X = \frac{1}{3}n_Y \Rightarrow n_X = \frac{1}{3} \times \frac{3}{4}n \Rightarrow n_X = \frac{1}{4}n \Rightarrow [X] = \frac{1}{4}\frac{n}{V}$$

c) A partir das informações, teremos:

$$n = n_{\rm y} + n_{\rm v}$$

$$n_{Y} = \frac{1}{3}n_{X} \Rightarrow n = n_{X} + \frac{1}{3}n_{X} = \frac{4}{3}n_{X}$$

$$n_X = \frac{3}{4}n \Rightarrow [X] = \frac{3}{4}\frac{n}{V}$$

$$n_{_{Y}} = \frac{1}{3}n_{_{X}} \Rightarrow n_{_{Y}} = \frac{1}{3} \times \frac{3}{4}n \Rightarrow n_{_{Y}} = \frac{1}{4}n \Rightarrow [Y] = \frac{1}{4}\frac{n}{V}$$

Análise das afirmações:

I.
$$v = K[X][Y]^2$$

$$v_{\rm a} = K \frac{n}{2V} \times \left(\frac{n}{2V}\right)^2 \Rightarrow v_{\rm a} = \frac{1}{8} K \frac{n^3}{V^3} \Rightarrow v_{\rm a} = \frac{8}{64} K \frac{n^2}{V^2}$$

$$v_b = K \frac{1}{4} \frac{n}{V} \times \left(\frac{3}{4} \frac{n}{V}\right)^2 \Rightarrow v_b = \frac{9}{64} K \frac{n^3}{V^3}$$

$$v_c = K \frac{3}{4} \frac{n}{V} \times \left(\frac{1}{4} \frac{n}{V}\right)^2 \Rightarrow v_c = \frac{3}{64} K \frac{n^3}{V^3}$$

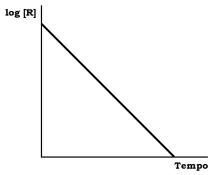
Conclusão:

$$v_c < v_a < v_b$$

II.
$$v = K[X][Y]$$

$$\begin{split} v_{a} &= K \frac{1}{2} \frac{n}{V} \times \frac{1}{2} \frac{n}{V} = \frac{1}{4} K \frac{n^{2}}{V^{2}} \Rightarrow v_{a} = \frac{4}{16} K \frac{n^{2}}{V^{2}} \\ v_{b} &= K \frac{1}{4} \frac{n}{V} \times \frac{3}{4} \frac{n}{V} = \frac{3}{16} K \frac{n^{2}}{V^{2}} \\ v_{c} &= K \frac{3}{4} \frac{n}{V} \times \frac{1}{4} \frac{n}{V} = \frac{3}{16} K \frac{n^{2}}{V^{2}} \end{split}$$

Conclusão:


$$v_b = v_c < v_a$$

III. v = K[X] representa uma reação de primeira ordem.

Nas reações de primeira ordem os tempos de meia-vida são iguais, pois a velocidade e a concentração de X são lineares:

Observações:

Gráfico para uma reação de primeira ordem:

 $Como~log_e = 2,303log,~multiplicando~a~equação~log[R] = \left(-\frac{K}{2,303}\right)t + log[R]_0~por~2,303,~teremos:$

$$2,303 \times log[R] = 2,303 \times \left(-\frac{K}{2,303}\right)t \, + \, 2,303 \times log[R]_0$$

$$\log_e = \ell n \Rightarrow \log_e[R] = \ell n[R]$$

$$\ell n[R] = -Kt + \ell n[R]_0$$

No tempo de meia-vida a concentração do reagente cai pela metade, ou seja, $[R] = [R]_0 / 2$. Substituindo na equação acima, vem:

$$\ell \, \mathbf{n}[\mathbf{R}]_0 - \ell \, \mathbf{n}[\mathbf{R}] = \mathbf{K} \, \mathbf{t}$$

$$t(\frac{1}{2}) = tempo de meia - vida$$

$$\ell\,n[R]_0-\ell\,n\frac{[R]_0}{2}=Kt(1/\!\!\!/_2)$$

$$K t(\frac{1}{2}) = \ell n \frac{[R]_0}{\left(\frac{[R]_0}{2}\right)}$$

$$K t(\frac{1}{2}) = \ell n 2$$

$$Kt(\frac{1}{2}) = 0,693$$

$$t(\frac{1}{2}) = \frac{0.693}{K}$$
 (Não varia)

QUESTÃO 7. Considere os seguintes potenciais de eletrodo em relação ao eletrodo padrão de hidrogênio nas condições-padrão: (E°): $E^o_{M^{3+}/M^{2+}} = 0,80 \text{ V}$ e $E^o_{M^{2+}/M^0} = -0,20 \text{ V}$. Assinale a opção que apresenta o valor, em V, de $E^o_{M^{3+}/M^0}$.

- A() -0.33
- B () -0,13
- C() + 0.13
- D() + 0.33
- E() +1,00

Resolução: Alternativa C

Sabemos que a fórmula $\Delta G^0 = -nF\epsilon^0$ relaciona a energia livre de Gibbs com a tensão da célula eletroquímica.

 ΔG = energia livre de Gibbs

n = número de mols de elétrons

F = constante de Faraday

 ε^0 = tensão produzida pela célula

Então:

1)
$$M^{3+} + e^{-} \longrightarrow M^{2+}$$
 $E_1 = +0.80 \text{ V} \implies \Delta G_1 = -1 \times F \times 0.80 = -0.80 \text{ F}$

$$\Delta G_3 = \Delta G_1 + \Delta G_2$$

$$-3F \times E_3 = -0.80F + 0.40F$$

$$E_3 = \frac{-0.80F}{-3F} = 0.13 \text{ V}$$

QUESTÃO 8. Considere as seguintes afirmações a respeito dos haletos de hidrogênio HF, HCl, HBr e HI.

- I. A temperatura de ebulição do HI é maior do que a dos demais.
- II. À exceção do HF, os haletos de hidrogênio dissociam-se completamente em água.

III. Quando dissolvidos em ácido acético glacial puro, todos se comportam como ácidos, conforme a seguinte ordem de força ácida: HI > HBr > HC ℓ >> HF.

Das afirmações acima, está(ão) correta(s) apenas

- A () I.
- B () I e II.
- C () II.
- D () II e III.
- E () III.

Resolução: Alternativa D

- I. Incorreta. O HF apresenta maior temperatura de ebulição, pois faz pontes ou ligações de hidrogênio muito intensas.
- II. Correta. HCℓ, HBr e HI são ácidos fortes, ou seja, dissociam-se totalmente em água. O HF é um ácido moderado.
- III. Correta. O ácido glacial puro é o ácido acético.

O ácido acético é um ácido orgânico fraco, logo, de acordo com a teoria de Brönsted-Lowry, na presença de $HC\ell$, HBr e HI o ácido acético se comporta como base. Quanto maior o raio do halogênio, mais forte será o hidrácido, então $HI > HBr > HC\ell >> HF$.

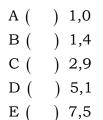
QUESTÃO 9. Considere volumes iguais dos gases NH_3 , CH_4 , e O_2 nas CNTP. Assinale a opção que apresenta o(s) gás(es) que se comporta(m) idealmente.

A () Apenas NH ₃
В () Apenas CH ₄
C () Apenas O_2
D () Apenas NH ₃ e CH ₄
E () Apenas CH_4 e O_2

Resolução: Alternativa E

Num gás ideal as forças intermoleculares são consideradas desprezíveis.

NH₃: faz pontes de hidrogênio.


O₂: faz dipolo induzido ou Van der Waals.

CH₄: faz dipolo induzido ou Van der Waals.

Nos gases O_2 e CH_4 as forças intermoleculares são menos intensas, então estes gases têm comportamento mais próximo do modelo ideal.

QUESTÃO 10. A 25 °C, a força eletromotriz da seguinte célula eletroquímica é de 0,45 V: $Pt(s)|H_2(g, 1 \text{ atm})|H^+(x \text{ mol} \cdot L^{-1})||KC\ell (0,1 \text{ mol} \cdot L^{-1})|Hg_2C\ell_2(s)|Hg(\ell)|Pt(s)$.

Sendo o potencial do eletrodo de calomelano – $KC\ell$ (0,1 mol·L⁻¹)| $Hg_2C\ell_2(s)|Hg(\ell)$ – nas condições-padrão igual a 0,28 V e o valor numérico da concentração dos íons H^+ , assinale a opção com o valor aproximado do pH da solução.

Resolução: Alternativa C

Dados:

$$\epsilon^{\text{o}}_{\text{H}_2}$$
 = 0,00 V; $\epsilon^{\text{o}}_{\text{Hg}_2\text{C}\ell_2}$ = 0,28 V

Teremos as seguintes reações de óxido-redução:

$$H_2(g) \longrightarrow 2H^+(aq) + 2e^-$$

$$\varepsilon_{\text{c\'elula}} = \varepsilon_{H_2} + \varepsilon_{Hg_2C\ell_2}$$
 (I)

Equação de Nernst para o eletrodo de H₂:

$$\boldsymbol{\epsilon}_{\boldsymbol{H}_{2}} = \boldsymbol{\epsilon}_{\boldsymbol{H}_{2}}^{o} - \frac{0,059}{n} \times log \frac{[\boldsymbol{H}^{\scriptscriptstyle{+}}]^{2}}{p_{\boldsymbol{H}_{2}}}$$

Para $p_{H_2} = 1$ atm e n = 2 mols de elétrons, vem:

$$\epsilon_{H_2} = 0,00 - \frac{0,059}{2} \times log \frac{\left[H^+\right]^2}{1}$$

$$\epsilon_{\rm H_2} = 2 \bigg(-\frac{0,059}{2} \bigg) \!\! \times log[H^{\scriptscriptstyle +}] \text{ (II)}$$

Substituindo (II) em (I):

$$\epsilon_{\text{c\'elula}} = 0.059 \times (-\log[H^{\scriptscriptstyle +}]) + \epsilon_{\text{Hg}_2\text{C}\ell_2}$$

$$0,45 = 0,059 \times pH + 0,28$$

$$pH = \frac{0,45 - 0,28}{0.059} = 2,88 \approx 2,9$$

QUESTÃO 11. São feitas as seguintes afirmações a respeito dos produtos formados preferencialmente em eletrodos eletroquimicamente inertes durante a eletrólise de sais inorgânicos fundidos ou de soluções aquosas de sais inorgânicos:

- I. Em CaCl₂ há formação de Ca(s) no catodo.
- II. Na solução aquosa 1×10^{-3} mol. L^{-1} em Na_2SO_4 há aumento do pH ao redor do anodo.
- III. Na solução aquosa $1 \text{ mol.L}^{-1}\text{em AgNO}_3$ há formação de no anodo.
- IV. Em NaBr (ℓ) há formação de Br $_2(\ell)$ no anodo.

Das afirmações acima, está(ão) errada(s) apenas

- A () I e II.
- B () I e III.
- C () II.
- D () III.
- E () IV.

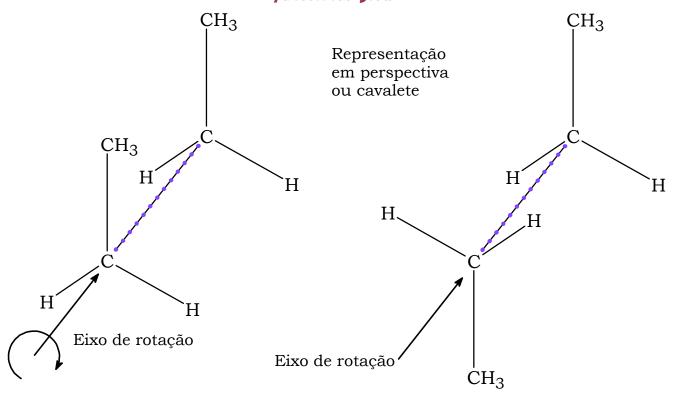
Resolução: Alternativa C

- I. Correta. Em $CaC\ell_2$ há formação de Ca(s) no catodo, pois ocorre a redução do cátion Ca^{2+} .
- II. Errada. Ocorre a oxidação da água no anodo e o valor do pH diminui devido à formação de cátions $H^+\left(H_2O(\ell)\longrightarrow 2H^+(aq)+2e^-+\frac{1}{2}O_2(g)\right)$.
- III. Correta. Ocorre a oxidação da água no anodo e a formação de gás oxigênio $\left(H_2O(\ell) \longrightarrow 2H^+(aq) \,+\, 2e^- \,+\, \frac{1}{2}O_2(g) \right).$
- IV. Correta. Temos a formação de $Br_2(\ell)$ no anodo, devido à oxidação do ânion brometo: $2Br^-(\ell) \longrightarrow Br_2(\ell) + 2e^-$.

QUESTÃO 12. São feitas as seguintes afirmações em relação à isomeria de compostos orgânicos:

- I. O 2-cloro-butano apresenta dois isômeros óticos.
- II. O *n*-butano apresenta isômeros conformacionais.
- III. O metil-ciclo-propano e o ciclo-butano são isômeros estruturais.
- IV. O alceno de fórmula molecular C₄H₈ apresenta um total de três isômeros.
- V. O alcano de fórmula molecular C₅H₁₂ apresenta um total de dois isômeros.

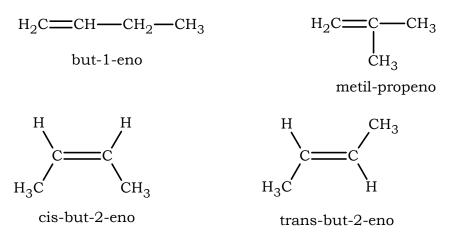
Das afirmações acima, está(ão) CORRETA(S) apenas


- A () I, II e III.
- B () I e IV.
- C () II e III.
- D () III, IV e V.
- E () IV e V.

Resolução: Alternativa A

I. Correta. O 2-cloro-butano apresenta dois isômeros óticos, o destrogiro e o levogiro, pois apresenta um carbono quiral ou assimétrico:

$$H_3C$$
 C CH_2 CH_3 CH_3


II. Correta. O *n*-butano apresenta isômeros conformacionais, ou seja, arranjos espaciais diferentes resultantes da rotação dos ligantes em torno da ligação sigma (simples):

III. Correta. O metil-ciclo-propano e o ciclo-butano são isômeros planos (estruturais) de cadeia:

$$\begin{array}{c} \text{CH}_3 \\ \mid \\ \text{CH} \\ \text{H}_2\text{C} \longrightarrow \text{CH}_2 \\ \text{H}_2\text{C} \longrightarrow \text{CH}_2 \\ \end{array}$$

IV. Incorreta. O alceno de fórmula molecular C_4H_8 apresenta um total de quatro isômeros (2 planos e 2 espaciais):

V. Incorreta. O alcano de fórmula molecular C_5H_{12} apresenta um total de três isômeros planos (sem contar os conformacionais):

QUESTÃO 13. Considere as reações representadas pelas seguintes equações químicas:

I.
$$C(s) + 2H_2(g) \longrightarrow CH_4(g)$$

II.
$$N_2O(g) \longrightarrow N_2(g) + 1/2O_2(g)$$

III.
$$2NI_3(s) \longrightarrow N_2(g) + 3I_2(g)$$

IV.
$$2O_3(g) \longrightarrow 3O_2(g)$$

Assinale a opção que apresenta a(s) reação(ões) química(s) na(s) qual(is) há uma variação negativa de entropia.

- A () Apenas I
- B () Apenas II e IV
- C () Apenas II e III e IV
- D () Apenas III
- E () Apenas IV

Resolução: Alternativa A

Análise das reações químicas:

$$I. \quad C(s) + \underbrace{2H_2(g)}_{\text{2 mols}} \longrightarrow \underbrace{1CH_4(g)}_{\text{1 mol}}$$

 $(2 \text{ mols de g \'{a}s}) \rightarrow (1 \text{ mol de g\'{a}s})$ $\Delta S < 0$

É formada menor quantidade de gás, diminui a desordem: variação negativa de entropia.

II.
$$\underbrace{1N_2O(g)}_{1 \text{ mol}} \longrightarrow \underbrace{N_2(g) + 1/2O_2(g)}_{1,5 \text{ mol}}$$

$$(1 \text{ mol de gás}) \rightarrow \left(\frac{3}{2} \text{ mol de gás}\right) \qquad \Delta S > 0$$

É formada maior quantidade de gás, aumenta a desordem: variação positiva de entropia.

III.
$$2 \operatorname{NI}_3(s) \longrightarrow \underbrace{1 \operatorname{N}_2(g) + 3 \operatorname{I}_2(g)}_{4 \operatorname{mols}}$$

(sólido)
$$\longrightarrow$$
 (gasoso) $\Delta S > 0$

$$(0 \text{ mols de gás}) \rightarrow (4 \text{ mols de gás})$$

Ocorre formação de gás, aumenta a desordem: variação positiva de entropia.

IV.
$$2O_3(g) \longrightarrow 3O_2(g)$$
 3 mols

$$(2 \text{ mols de g ás}) \rightarrow (3 \text{ mols de g ás}) \qquad \Delta S > 0$$

É formada maior quantidade de gás, aumenta a desordem: variação positiva de entropia.

QUESTÃO 14. Assinale a opção que indica o polímero da borracha natural.

- A () Poliestireno
- B () Poliisopreno
- C () Poli (metacrilato de metila)
- D () Polipropileno
- E () Poliuretano

Resolução: Alternativa B

A borracha natural é formada a partir do 2-metil-buta-1,3-dieno ou isopreno (buna mole):

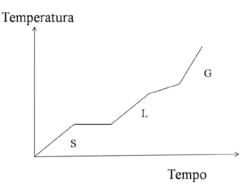
2-metil-buta-1,3-dieno

poli-2-metil-buta-1,3-dieno ou poli-isopreno

QUESTÃO 15. Assinale a opção que apresenta os compostos nitrogenados em ordem crescente de número de oxidação do átomo de nitrogênio.

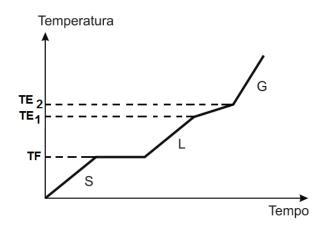
- A () $N_2H_4 < K_2N_2O_2 < NaNH_2 < NI_3 < Na_2NO_2$
- B () $K_2N_2O_2 < Na_2NO_2 < NI_3 < NaNH_2 < N_2H_4$
- C() $NaNH_2 < N_2H_4 < K_2N_2O_2 < Na_2NO_2 < NI_3$
- $D () NI_3 < NaNH_2 < Na_2NO_2 < N_2H_4 < K_2N_2O_2$
- $\label{eq:energy} E \ \left(\ \ \right) \ Na_{2}NO_{2} < NI_{3} < N_{2}H_{4} < K_{2}N_{2}O_{2} < NaNH_{2}$

Resolução: Alternativa C


$NaNH_2$	N_2H_4	$K_2N_2O_2$
Na N H H	H H N N H H	K K N N O O
+1 -3 +1 +1 = 0	+1 $+1$ -2 -2 $+1$ $+1$	+1 $+1$ $+1$ $+1$ -2 -2
Na = +1	H = +1	K = +1
N = -3	N = -2	N = +1
H = +1		O = -2

Observação:

Poderíamos ter, também, a seguinte ordem: $NI_3 = NaNH_2 < N_2H_4 < K_2N_2O_2 < Na_2NO_2$.


QUESTÃO 16. A figura representa a curva de aquecimento de uma amostra, em que S, L e G significam, respectivamente, sólido, líquido e gasoso. Com base nas informações da figura é CORRETO afirmar que a amostra consiste em uma

- A () substância pura.
- B () mistura coloidal.
- C () mistura heterogênea.
- D () mistura homogênea azeotrópica.
- E () mistura homogênea eutética.

Resolução: Alternativa E

O gráfico representa uma mistura homogênea eutética, pois a temperatura de fusão é constante e existe um intervalo de ebulição $(TE_1\ a\ TE_2)$:

QUESTÃO 17. Considere os seguintes pares de moléculas:

- I. LiCℓ e KCℓ.
- II. $A\ell C\ell_3$ e $PC\ell_3$.
- III. $NC\ell_3$ e $AsC\ell_3$.

Assinale a opção com as três moléculas que, cada uma no seu respectivo par, apresentam ligações com o maior caráter covalente.

- A () LiC ℓ , A ℓ C ℓ_3 e NC ℓ_3
- B () LiC ℓ , PC ℓ_3 e NC ℓ_3
- C () KC ℓ , A ℓ C ℓ_3 e AsC ℓ_3
- D () $KC\ell$, $PC\ell_3$ e $NC\ell_3$
- E () KC ℓ , A ℓ C ℓ_3 e NC ℓ_3

Resolução: Alternativa B

Tabela de eletronegatividade de Linus Pauling

H 2,1																	
Li 1,0	Be 1,5											B 2,0	C 2,5	N 3,0	O 3,5	F 4.0	
Na 0,9	Mg 1,2											Al 1,5	Si 1,8	Р 2,1	S 2,5	Cl 3,0	
K 0,8	Ca 1,0	Sc 1,3	Ti 1,5	V 1,6	Cr 1,6	Mn 1,5	Fe 1,8	Co 1,9	Ni 1,9	Cu 1,9	Zn 1,6	Ga 1,6	Ge 1,8	As 2,0	Se 2,4	Br 2,8	
Rb 0,8	Sr 1,0	Y 1,2	Zr 1,4	Nb 1,6	Mo 1,8	Tc 1,9	Ru 2,2	Rh 2,2	Pd 2,2	Ag 1,9	Cd 1,7	In 1,7	Sn 1,8	Sb 1,9	Te 2,1	I 2,5	
Cs 0,7	Ba 0,9	*	Hf 1,3	Ta 1,5	W 1,7	Re 1,9	0s 2,2	Ir 2,2	Pt 2,2	Au 2,4	Hg 1,9	Tl 1,8	Pb 1,9	Bi 1,9	Po 2,0	At 2,2	
Fr 0,7	Ra 0,9																

* 1,0 a 1,2

 ΔE = diferença de eletronegatividade

 $\Delta E \le 1,6 \implies predominantemente covalente$

 $\Delta E \ge 1,7 \implies$ predominantemente iônica

 $\Delta E = 0 \implies puramente covalente$

I. Li, Cℓ e K

 $K < Li < C\ell$

ou

Eletronegatividade de Linus Pauling:

$$K = 0.8$$
; $Li = 1.0$; $C\ell = 3.0$

$$LiC\ell \Rightarrow \Delta E = 3,0-1,0=2,0$$
 (caráter iônico)

 $KC\ell \Rightarrow \Delta E = 3,0-0,8=2,2$ (caráter iônico mais acentuado)

II. A ℓ , P e C ℓ

$$A\ell < P < C\ell$$

ou

Eletronegatividade de Linus Pauling:

$$A\ell = 1,5; P = 2,1; C\ell = 3,0$$

$$A\ell C\ell_3 \Rightarrow \Delta E = 3,0-1,5=1,5$$
 (caráter covalente)

$$PC\ell_3 \Rightarrow \Delta E = 3,0-2,1=0,9$$
 (caráter covalente acentuado)

III. N, $C\ell$ e As

$$As \ < \ N \ = \ C\ell$$

ou

Eletronegatividade de Linus Pauling:

$$N = 3.0$$
; $C\ell = 3.0$; $As = 2.0$

$$NC\ell_3 \Rightarrow \Delta E = 3,0-3,0=0,0$$
 (caráter covalente mais acentuado)

$$AsC\ell_3 \Rightarrow \Delta E = 3,0-2,0=1,0$$
 (caráter covalente)

Maior caráter covalente : LiC ℓ , PC ℓ_3 e NC ℓ_3 .

QUESTÃO 18. São descritos três experimentos (I, II e III) utilizando-se em cada um 30 mL de uma solução aquosa saturada, com corpo de fundo de cloreto de prata, em um béquer de 50 mL a 25 °C e 1 atm:

- I. Adiciona-se certa quantidade de uma solução aquosa 1 mol.L⁻¹ em cloreto de sódio.
- II. Borbulha-se sulfeto de hidrogênio gasoso na solução por certo período de tempo.
- III. Adiciona-se certa quantidade de uma solução aquosa 1 mol.L⁻¹ em nitrato de prata.

Em relação aos resultados observados após atingir o equilíbrio, assinale a opção que apresenta o(s) experimento(s) no(s) qual(is) houve aumento da quantidade de sólido.

Α () Apenas I
В () Apenas I e II
C () Apenas I e III
D () Apenas II e III
E () Apenas I, II e III

Resolução: Alternativa E

O produto de solubilidade do cloreto de prata é muito baixo $(\approx 1,0 \times 10^{-10})$, ou seja, este sal é muito pouco solúvel.

I. Adiciona-se certa quantidade de uma solução aquosa 1 mol.L⁻¹ em cloreto de sódio:

$$AgC\ell(s) \rightleftharpoons Ag^+(aq) + C\ell^-(aq)$$

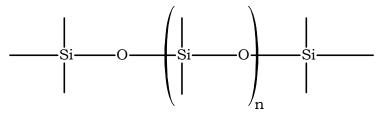
O equilíbrio desloca para a esquerda e ocorre a formação de precipitado, pois aumentará a concentração de íons $C\ell^-$ na solução. A quantidade de sólido aumentará.

II. Borbulha-se sulfeto de hidrogênio gasoso na solução por certo período de tempo: Teremos as seguintes reações:

$$\begin{split} &H_2S(g)+2Ag^+(aq)+2C\ell^-(aq) \longrightarrow Ag_2S(s)+2HC\ell(aq) \\ &ou \\ &H_2S(g)+2Ag^+(aq)+2C\ell^-(aq) \longrightarrow Ag_2S(s)+2H^+(aq)+2C\ell^-(aq) \\ &ou \\ &H_2S(g)+2Ag^+(aq) \longrightarrow Ag_2S(s)+2H^+(aq) \end{split}$$

Ocorrerá a formação de precipitado e a quantidade de sólido aumentará.

III. Adiciona-se certa quantidade de uma solução aquosa 1 mol. L^{-1} em nitrato de prata. O nitrato de prata é um sal muito solúvel em água: $AgNO_3 \longrightarrow Ag^+(aq) + NO_3^-(aq)$.


Com o aumento da concentração de cátions Ag^+ , o equilíbrio $AgC\ell(s) \longleftrightarrow Ag^+(aq) + C\ell^-(aq)$ será deslocado para a esquerda e a quantidade de sólido aumentará.

QUESTÃO 19. Assinale a opção com a resina polimérica que mais reduz o coeficiente de atrito entre duas superfícies sólidas.

- A () Acrílica
- B () Epoxídica
- C () Estirênica
- D () Poliuretânica
- E () Poli (dimetil siloxano)

Resolução: Alternativa E

A resina que mais reduz o coeficiente de atrito entre duas superficies sólidas é o poli(dimetil siloxano), pois pertence aos polímeros do silicone. Uma das suas características é o poder lubrificante.

QUESTÃO 20. Considere uma amostra aquosa em equilíbrio a 60 °C, com pH de 6,5, a respeito da qual são feitas as seguintes afirmações:

- I. A amostra pode ser composta de água pura.
- II. A concentração molar de H₃O⁺ é igual à concentração de OH⁻.
- III. O pH da amostra não varia com a temperatura.
- IV. A constante de ionização da amostra depende da temperatura.
- V. A amostra pode ser uma solução aquosa $0.1 \text{ mol} \cdot \text{L}^{-1}$ em H_2CO_3 , considerando que a constante de dissociação do H_2CO_3 é da ordem de 1×10^{-7} .

Das afirmações acima está(ão) correta(s) apenas

$$A \ (\quad) \ I, \, II \, e \, IV. \qquad B \ (\quad) \ I \, e \, III. \qquad C \ (\quad) \ II \, e \, IV. \qquad D \ (\quad) \ III \, e \, V. \qquad E \ (\quad) \ V.$$

Resolução: Alternativa A

I. Correta. A amostra pode ser composta de água pura ou por uma solução neutra.

A a 60 °C, simplificadamente, teremos:

$$H_2O + H_2O \longrightarrow H_3O^+ + OH^ K_W = [H_3O^+] \times [OH^-] = 10^{-13}$$
 $10^{-pH} \times 10^{-pOH} = 10^{-13}$
 $-pH - pOH = -13$
 $pH + pOH = 13$
 $pH = 6,5$ (solução neutra)

II. Correta. A concentração molar de H_3O^+ é igual à concentração de OH^- . Numa solução neutra $[H_3O^+]=[OH^-]=10^{-13}$ mol/L.

III. Incorreta. O pH da amostra varia com a temperatura, pois a 25 °C o valor de K_W (10⁻¹⁴) é diferente daquele comparado a 60 °C (10⁻¹³).

IV. Correta. A constante de ionização da amostra depende da temperatura.

V. Incorreta. Teremos:

AS QUESTÕES DISSERTATIVAS, NUMERADAS DE 21 A 30, DEVEM SER RESPONDIDAS NO CADERNO DE SOLUÇÕES. AS QUESTÕES NUMÉRICAS DEVEM SER DESENVOLVIDAS SEQUENCIALMENTE ATÉ O FINAL.

Questão 21. A tabela mostra a variação de entalpia de formação nas condições-padrão a 25 °C de algumas substâncias. Calcule a variação da energia interna de formação, em kJ.mol⁻¹, nas condições-padrão dos compostos tabelados. Mostre os cálculos realizados.

Substância	$\Delta H_{\rm f}^{\rm o}$ (kJ·mol ⁻¹)
$AgC\ell(s)$	- 127
CaCO ₃ (s)	- 1207
$\mathrm{H_2O}(\ell)$	- 286
$H_2S(g)$	- 20
NO ₂ (g)	+ 34

Resolução:

Num sistema mantido à pressão constante P, a pressão externa (P_{ext}) deve ser igual à pressão interna. Aquecendo o sistema ele expande à pressão constante e neste caso o trabalho será dado por: Trabalho = $P_{ext} \times \Delta V = P \times \Delta V$.

A partir da primeira lei da termodinâmica vem:

 $\Delta H = \Delta U + Trabalho$

 $\Delta U = \Delta H - Trabalho$

onde,

ΔU: Variação da energia interna do sistema

ΔH: Variação da entalpia

Então,

$$\begin{split} \Delta U &= \Delta H \ - \ P \times \Delta V \\ P \times \Delta V &= \Delta n \times R \times T \Longrightarrow \Delta U = \Delta H \ - \ \Delta n \times R \times T \end{split}$$

Analisando as reações de formação das substâncias da tabela, teremos:

$$\begin{split} & AgC\ell(s); \ \Delta H = -127 \ kJ. \, mol^{-1}; \ R = 8,31 \ J. \, K^{-1}. \, mol^{-1} = 8,31 \ \times 10^{-3} \ kJ. \, K^{-1} mol^{-1}; \ T = 25 + 273 = 298 \ K \\ & Ag(s) + \frac{1}{2}C\ell_2(g) \rightarrow AgC\ell(s) \end{split}$$

$$\Delta n = n_{\text{produtos gasosos}} - n_{\text{reagentes gasosos}} = 0, 0 - 0, 5 = -0, 5 \text{ mol}$$

$$\Delta U = \Delta H \ - \ \Delta n \times R \times T$$

$$\Delta U = -127 - (-0.5 \times 8.31 \times 10^{-3} \times 298) = -125.76 \text{ kJ.mol}^{-1}$$

$$\Delta U_{AgC\ell(s)} = -125,76 \text{ kJ.mol}^{-1}$$

$$CaCO_3(s)$$
; $\Delta H = -1207 \text{ kJ.mol}^{-1}$; $R = 8,31 \text{ J.K}^{-1}\text{mol}^{-1} = 8,31 \times 10^{-3} \text{ kJ.K}^{-1}\text{mol}^{-1}$; $T = 25 + 273 = 298 \text{ K}$

$$Ca(s) + C(s) + \frac{3}{2}O_2(g) \rightarrow CaCO_3(s)$$

$$\Delta n = n_{\text{produtos gasosos}} - n_{\text{reagentes gasosos}} = 0, 0 - 1, 5 = -1, 5 \text{ mol}$$

$$\Delta U = \Delta H - \Delta n \times R \times T$$

$$\Delta U = -1207 - (-1.5 \times 8.31 \times 10^{-3} \times 298) = -1203.29 \text{ kJ.mol}^{-1}$$

$$\Delta U_{CaCO_3(s)} = -1203,29 \text{ kJ.mol}^{-1}$$

$$H_2O(\ell)$$
; $\Delta H = -286 \text{ kJ.mol}^{-1}$; $R = 8,31 \text{ J.K}^{-1}\text{mol}^{-1} = 8,31 \times 10^{-3} \text{ kJ.K}^{-1}\text{mol}^{-1}$; $T = 25 + 273 = 298 \text{ K}$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(\ell)$$

$$\Delta n = n_{\text{produtos gasosos}} - n_{\text{reagentes gasosos}} = 0, 0 - 1, 5 = -1, 5 \text{ mol}$$

$$\Delta U = \Delta H - \Delta n \times R \times T$$

$$\Delta U = -286 - (-1.5 \times 8.31 \times 10^{-3} \times 298) = -282.28 \text{ kJ.mol}^{-1}$$

$$\Delta U_{H_2O(\ell)} = -282,28 \text{ kJ.mol}^{-1}$$

$$H_2S(g); \Delta H = -20 \text{ kJ.mol}^{-1}; R = 8,31 \text{ J.K}^{-1}\text{mol}^{-1} = 8,31 \times 10^{-3} \text{ kJ.K}^{-1}\text{mol}^{-1}; T = 25 + 273 = 298 \text{ K}$$

$$H_2(g) + S(r\hat{o}mbico) \rightarrow H_2S(g)$$

$$\Delta n = n_{\text{produtos gasosos}} - n_{\text{reagentes gasosos}} = 1,0-1,0 = -0,0 \text{ mol}$$

$$\Delta U = \Delta H \ - \ \Delta n \times R \times T$$

$$\Delta U = -20 - (-0.0 \times 8.31 \times 10^{-3} \times 298) = -20 \text{ kJ.mol}^{-1}$$

$$\Delta U_{H_0S(g)} = -20 \text{ kJ.mol}^{-1}$$

$$NO_{2}(g); \Delta H = +34 \text{ kJ.mol}^{-1}; R = 8,31 \text{ J.K}^{-1}\text{mol}^{-1} = 8,31 \times 10^{-3} \text{ kJ.K}^{-1}\text{mol}^{-1}; T = 25 + 273 = 298 \text{ K}$$

$$\frac{1}{2}N_2(g) + O_2(g) \rightarrow NO_2(g)$$

$$\Delta n = n_{\text{produtos gasosos}} - n_{\text{reagentes gasosos}} = 1, 0 - 1, 5 = -0, 5 \text{ mol}$$

$$\Delta U = \Delta H - \Delta n \times R \times T$$

$$\Delta U = +34 - (-0.5 \times 8.31 \times 10^{-3} \times 298) = +35.24 \text{ kJ.mol}^{-1}$$

$$\Delta U_{NO_2(g)} = +35,24 \text{ kJ.mol}^{-1}$$

Questão 22. Apresente os respectivos produtos (A, B, C, D e E) das reações químicas representadas pelas seguintes equações:

$$CH_2CH_3$$
 $C\ell_2$
 $Calor$
 $A + B$
 HNO_3
 H_2SO_4
 CH_3
 CH_3

Resolução:

A substituição do hidrogênio na presença de calor ou luz ocorre na cadeia lateral do etil-benzeno:

A nitração do fenol na presença de ácido sulfúrico ocorre com orto e para dirigência, para a formação de um único produto, teremos:

$$\begin{array}{c} \text{OH} \\ \downarrow \\ \text{HC} \\ \downarrow \\ \text{CH} \end{array} + 3\text{HO} \\ \text{NO}_2 \\ \hline \begin{array}{c} \text{H}_2\text{SO}_4 \\ \downarrow \\ \text{HC} \\ \hline \end{array} \begin{array}{c} \text{OH} \\ \downarrow \\ \text{CO} \\ \text{NO}_2 \\ \\ \text{HC} \\ \hline \end{array} \begin{array}{c} \text{NO}_2 \\ \downarrow \\ \text{CH} \\ \end{array} + 3\text{H}_2\text{O}$$

A oxidação do tolueno produz ácido benzoico:

A nitração do ácido benzoico ocorre com meta dirigência, para a formação de um único produto na nitração, teremos:

ou com excesso de ácido nítrico:

O OH

OCO

OH

OCO

CH

HC

CH

$$+ 2 \text{ HO} - \text{NO}_2$$

E

OOH

OCO

OH

 $+ 2 \text{HO} - \text{NO}_2$

O2N

CH

 $+ 2 \text{HO} - \text{NO}_2$

E

Questão 23. Uma mistura gasosa é constituída de C₃H₈, CO e CH₄. A combustão de 100 L desta mistura em excesso de oxigênio produz 190 L de CO₂. Determine o valor numérico do volume, em L, de propano na mistura gasosa original.

Resolução:

Reações de combustão:

$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$$

 $x = 5x = 3x = 4x$

$$CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)$$

 $y + \frac{1}{2}y$ y

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(g)$$

 z $2z$ z $2z$

O volume total será dado por: x + y + z = 100 (I)

O volume de CO_2 total será dado por: 3x + y + z = 190 (II)

De (I) e (II), vem:

$$y + z = 100 - x$$

$$3x + (100 - x) = 190$$

$$x = 45$$

O valor numérico do volume, em L, de propano na mistura gasosa original será de 45 L.

Questão 24. Descreva por meio de equações as reações químicas envolvidas no processo de obtenção de magnésio metálico a partir de carbonato de cálcio e água do mar.

Resolução:

A partir da calcinação do carbonato de cálcio, teremos:

$$CaCO_3(s) \xrightarrow{\Delta\Delta\Delta} CaO(s) + CO_2(g)$$

A partir da hidratação do óxido de cálcio obtém-se hidróxido de cálcio:

$$CaO(s) + H_2O(\ell) \longrightarrow Ca(OH)_2(aq)$$

A água do mar é rica em íons Mg²⁺(aq), então:

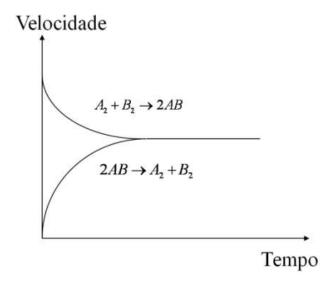
$$Ca(OH)_2(aq) \longrightarrow Ca^{2+}(aq) + 2OH^{-}(aq)$$

$$Mg^{2+}(aq) + 2OH^{-}(aq) \longrightarrow Mg(OH)_{2}(s)$$

A partir da reação do hidróxido de magnésio com ácido clorídrico, teremos:

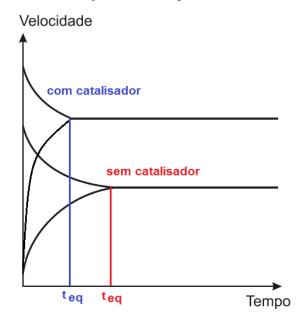
$$Mg(OH)_2(s) + 2HC\ell(aq) \longrightarrow MgC\ell_2(aq) + 2H_2O(\ell)$$

Faz-se, então, a secagem do $MgC\ell_2(aq)$ e a eletrólise ígnea do $MgC\ell_2(s)$.


$$MgC\ell_2(s) \longrightarrow Mg^{2+}(\ell) + 2C\ell^-(\ell)$$

$$2C\ell^-(\ell) \xrightarrow{Oxidação} 2e^- + C\ell_2(g)$$
 (ânodo)

$$Mg^{2+}(\ell) + 2e^{-} \xrightarrow{Re dução} Mg(s)$$
 (cátodo)


Questão 25. A figura apresenta a variação de velocidade em função do tempo para a reação química hipotética não catalisada representada pela equação $A_2 + B_2 \rightleftharpoons 2AB$.

Reproduza esta figura no caderno de soluções, incluindo no mesmo gráfico, além das curvas da reação catalisada, as da reação não catalisada, explicitando ambas as condições.

Resolução:

O catalisador acelerará tanto a reação direta como a inversa. A reação atingirá o equilíbrio antes do tempo que atingiria sem o catalisador:

Questão 26. Considere a reação de combustão do composto X, de massa molar igual a $27,7 \text{ g.mol}^{-1}$, representada pela seguinte equação química balanceada:

$$X(g) + 3O_2(g) \longrightarrow Y(s) + 3H_2O(g); \Delta H_c^o = -2035 \text{ kJ} \cdot \text{mol}^{-1}$$

Calcule o valor numérico, em kJ, da quantidade de calor liberado na combustão de:

- **a)** 1.0×10^3 g de X
- **b)** 1.0×10^2 g mol de X
- c) $2,6 \times 10^{22}$ moléculas de X
- **d)** uma mistura de 10,0 g de X e 10,0 g de O_2 .

Resolução:

a) Teremos:

b) Teremos:

c) Teremos:

d) Teremos:

$$X(g) + 3O_2(g) \longrightarrow Y(s) + 3H_2O(g)$$

 $27,7 g \longrightarrow 3 \times 32 g$
 $10,0 g \longrightarrow 10,0 g$
 $X(g) + 3O_2(g) \longrightarrow Y(s) + 3H_2O(g)$
 $27,7 g \longrightarrow 3 \times 32 g$
 $m_X \longrightarrow 10,0 g$
 $m_X = \frac{27,7 g \times 10,0 g}{3 \times 32 g}$
 $m_X = 2,89 g$

Então:

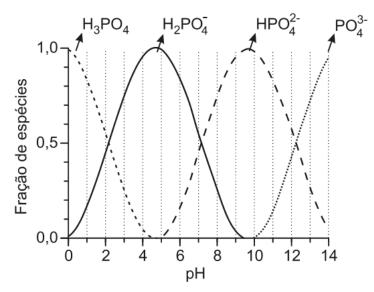
Questão 27. Considere dois lagos naturais, um dos quais contendo rocha calcárea (CaCO₃ e MgCO₃) em contato com a água.

Discuta o que acontecerá quando houver precipitação de grande quantidade de chuva ácida (pH < 5,6) em ambos os lagos. Devem constar de sua resposta os equilíbrios químicos envolvidos.

Resolução:

No lago que contém rocha calcárea, a chuva ácida, de ácido carbônico $(H_2CO_3(aq))$, dissolve a rocha calcárea:

$$\begin{split} 2H_2CO_3(aq) & \longleftrightarrow 2H^+(aq) + 2HCO_3^-(aq) \\ CaCO_3(s) + 2H^+(aq) & \longleftrightarrow Ca^{2+}(aq) + H_2O(\ell) + CO_2(aq) & \longleftrightarrow Ca^{2+}(aq) + 2H^+(aq) + 2HCO_3^-(aq) \\ MgCO_3(s) + 2H^+(aq) & \longleftrightarrow Mg^{2+}(aq) + H_2O(\ell) + CO_2(aq) & \longleftrightarrow Mg^{2+}(aq) + 2H^+(aq) + 2HCO_3^-(aq) \\ \end{split}$$


Ocorrerá diminuição do pH devido à elevação da concentração dos íons H+.

No outro lago a chuva ácida aumentará a concentração de íons H+:

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

Consequentemente o equilíbrio $H_2O(\ell) \longleftrightarrow H^+(aq) + OH^-(aq)$ será deslocado para a esquerda. A concentração de íons H^+ , neste caso, será maior do que no lago de rocha calcárea.

Questão 28. A figura apresenta o diagrama de distribuição de espécies para o ácido fosfórico em função do pH.

Com base nesta figura, pedem-se:

- **a)** Os valores de pK_a¹, pK_a² e pK_a³, sendo K_a¹, K_a² e K_a², respectivamente, a primeira, segunda e terceira constantes de dissociação do ácido fosfórico.
- **b)** As substâncias necessárias para preparar uma solução tampão de pH 7,4, dispondo-se do ácido fosfórico e respectivos sais de sódio. Justifique.
- c) A razão molar das substâncias escolhidas no item b).
- **d)** O procedimento experimental para preparar a solução tampão do item b).

Resolução:

Observação: Os valores $depK_a^1$, pK_a^2 e pK_a^3 , sendo K_a^1 , K_a^2 e K_a^2 , respectivamente, a primeira, segunda e terceira constantes de dissociação do ácido fosfórico.

a) Constante de equilíbrio K_a obtida a partir da primeira etapa da ionização do ácido fosfórico:

$$H_3PO_4(aq) \rightleftharpoons H^+(aq) + H_2PO_4^-(aq)$$

$$K_a^1 = \frac{[H^+(aq)] \times [H_2PO_4^-(aq)]}{[H_3PO_4(aq)]}$$

De acordo com o gráfico para 0,5 mol em fração de espécies, a concentração de H_3PO_4 (aq) é igual a de $H_2PO_4^-$ (aq), então teremos:

$$\begin{split} K_{a}^{1} &= \frac{[H^{+}(aq)] \times [H_{2}PO_{4}^{-}(aq)]}{[H_{2}PO_{4}(aq)]} \\ K_{a}^{1} &= [H^{+}(aq)] \Rightarrow -\log K_{a}^{1} = -\log [H^{+}(aq)] \\ pK_{a}^{1} &= pH \end{split}$$

De acordo com o gráfico $[H_3PO_4(aq)] = [H_2PO_4^-(aq)] \Rightarrow pH = 2,2$, consequentemente, como $pK_a^1 = pH \Rightarrow pK_a^1 = 2,2$.

Constante de equilíbrio $\mathrm{K}^2_{\mathrm{a}}$ obtida a partir da segunda etapa da ionização do ácido fosfórico:

$$H_2PO_4^-(aq) \rightleftharpoons H^+(aq) + HPO_4^{2-}(aq)$$

$$K_a^2 = \frac{[H^+(aq)] \times [HPO_4^{\ 2-}(aq)]}{[H_2PO_4^{\ -}(aq)]}$$

De acordo com o gráfico para 0,5 mol em fração de espécies, a concentração de $H_2PO_4^-$ (aq) é igual a de HPO_4^{2-} (aq), então teremos:

$$H_2PO_4^-(aq) \rightleftharpoons H^+(aq) + HPO_4^{2-}(aq)$$

$$K_{a}^{2} = \frac{[H^{+}(aq)] \times [HPO_{4}^{2}(aq)]}{[H_{2}PO_{4}(aq)]}$$

$$K_a^2 = [H^+(aq)] \Rightarrow -\log K_a^2 = -\log[H^+(aq)]$$

 $pK_a^2 = pH$

De acordo com o gráfico $[H_2PO_4^-(aq)] = [HPO_4^{-2}(aq)] \Rightarrow pH = 7,2$, consequentemente, como $pK_a^2 = pH \Rightarrow pK_a^2 = 7,2$.

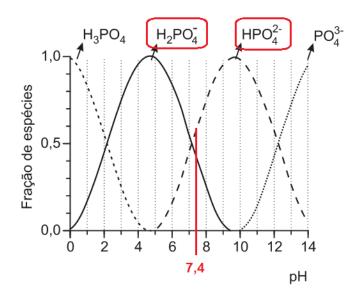
Constante de equilíbrio K_a^3 obtida a partir da segunda etapa da ionização do ácido fosfórico:

$$HPO_4^{2-}(aq) \longleftrightarrow H^+(aq) + PO_4^{3-}(aq)$$

$$K_a^3 = \frac{[H^+(aq)] \times [PO_4^{\ 3-}(aq)]}{[HPO_4^{\ 2-}(aq)]}$$

De acordo com o gráfico para 0,5 mol em fração de espécies, a concentração de HPO₄²⁻(aq) é igual a de PO₄³⁻(aq), então teremos:

$$HPO_4^{2-}(aq) \longleftrightarrow H^+(aq) + PO_4^{3-}(aq)$$

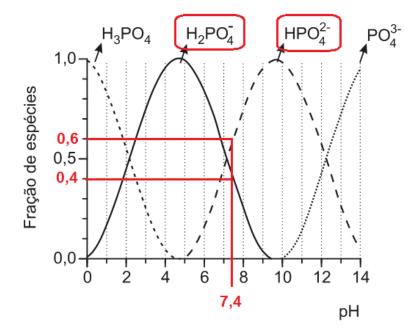

$$K_a^3 = \frac{[H^+(aq)] \times [PO_4^{3-}(aq)]}{[HPO_4^{2-}(aq)]}$$

$$K_a^3 = [H^{\scriptscriptstyle +}(aq)] \Longrightarrow -\log K_a^3 = -\log [H^{\scriptscriptstyle +}(aq)]$$

$$pK_a^3 = pH$$

De acordo com o gráfico $[HPO_4^{\ 2^-}(aq)] = [PO_4^{\ 3^-}(aq)] \Rightarrow pH = 12,2$, consequentemente, como $K_a^3 = pH \Rightarrow pK_a^3 = 12,2$.

b) Numa solução tampão o valor do pH permanece constante. Para um valor de pH igual a 7,4, de acordo com o gráfico é necessária uma solução contendo os íons $H_2PO_4^-$ e HPO_4^{2-} (aq):



Os sais necessários para formar o tampão seriam NaH_2PO_4 (dihidrogeno-fosfato de sódio) e Na_2HPO_4 (monohidrogeno-fosfato de sódio).

c) No tampão, teremos o seguinte equilíbrio:

$$\begin{split} &H_{2}PO_{4}^{-}(aq) \Longleftrightarrow H^{+}(aq) + HPO_{4}^{-2-}(aq) \\ &K_{a} = \frac{[H^{+}(aq)] \times [HPO_{4}^{-2-}(aq)]}{[H_{2}PO_{4}^{--}]} \\ &K_{a} = H^{+}(aq)] \times \frac{[HPO_{4}^{-2-}(aq)]}{[H_{2}PO_{4}^{--}]} \\ &Então, \\ &-log \, K_{a} = -log \bigg([H^{+}(aq)] \times \frac{[HPO_{4}^{-2-}(aq)]}{[H_{2}PO_{4}^{--}]} \bigg) \\ &-log \, K_{a} = -log [H^{+}(aq)] - \bigg(log \frac{[HPO_{4}^{-2-}(aq)]}{[H_{2}PO_{4}^{--}]} \bigg) \\ &pK_{a} = pH - log \frac{[HPO_{4}^{-2-}(aq)]}{[H_{2}PO_{4}^{--}]} = pH - pK_{a} \\ &\frac{[HPO_{4}^{-2-}(aq)]}{[H_{2}PO_{4}^{--}]} = 10^{(PH-pK_{a})} \\ &\frac{[HPO_{4}^{-2-}(aq)]}{[H_{2}PO_{4}^{--}]} = 10^{(7,4-7,2)} \\ &\frac{[HPO_{4}^{-2-}(aq)]}{[H_{2}PO_{4}^{--}]} = 10^{0,2} \quad ou \\ &\frac{[HPO_{4}^{-2-}(aq)]}{[H_{2}PO_{4}^{--}]} = 1,58 \end{split}$$

Ou (obtenção pelo gráfico) aproximadamente:

$$\frac{[\text{HPO}_4^{\ 2^-}(\text{aq})]}{[\text{H}_2\text{PO}_4^{\ -}]} = \frac{0.6}{0.4} = 1.5$$

d) A solução tampão deve ser preparada a partir da neutralização parcial do ácido fosfórico na presença de hidróxido de sódio.

Deve-se acrescentar a solução de hidróxido de sódio (NaOH) na solução de ácido fosfórico (que tenha concentração conhecida) até que o pH seja igual a 7,4 (para isso pode-se usar um pHmetro).

Também se pode medir a massa dos sais NaH_2PO_4 e Na_2HPO_4 na proporção descrita no item anterior (1,58, pelo gráfico, aproximadamente, 1,5) e dissolvê-los em água dentro de um balão volumétrico.

Questão 29. A nitrocelulose é considerada uma substância química explosiva, sendo obtida a partir da nitração da celulose. Cite outras cinco substâncias explosivas sintetizadas por processos de nitração.

Resolução:

A partir do processo de nitração, podemos obter as seguintes substâncias:

2,4,6-Trinitrofenilmetilnitroamina (Tetril)

Trinitrofenol (ácido pícrico)

PETN, Tetranitrato de pentaeritritol

Questão 30. Explique como diferenciar experimentalmente uma amina primária de uma secundária por meio da reação com o ácido nitroso. Justifique a sua resposta utilizando equações químicas para representar as reações envolvidas.

Resolução:

Podemos diferenciar experimentalmente uma amina primária de uma secundária por meio da reação com o ácido nitroso, pois na reação das aminas primárias com ácido nitroso ocorre a liberação de gás nitrogênio e na reação das aminas secundárias com ácido nitroso ocorre a formação de nitrosamina, uma substância de cor amarela:

$$R-NH_2 + HNO_2 \longrightarrow R-OH + H_2O + N_2(g)$$

$$R-NH-R + HNO_2 \longrightarrow R-N-N=O + H_2O$$

$$Nitrosamina$$