ITA 2002

PROVA DE QUÍMICA

Esta prova é composta de **20 questões de múltipla escolha** e de **10 questões dissertativas**. As questões dissertativas, numeradas de 21 a 30, devem der respondidas no **caderno de soluções**.

DADOS EVENTUALMENTE NECESSÁRIOS

CONSTANTES

Constante de Avogadro = 6.02×10^{23} mol⁻¹

Constante de Faraday = $9,65 \times 10^4$ C.mol⁻¹

Volume molar de gás ideal = 22,4 L (CNTP)

Carga elementar = $1,602 \times 10^{-19}$ C

Constante dos gases $(R) = 8.21 \times 10^{-2} \text{ atm.L.K}^{-1}.\text{mol}^{-1}$

 $(R) = 8,31 \text{ J.K}^{-1}.\text{mol}^{-1}$

 $(R) = 62,4 \text{ mmHg.L.K}^{-1}.\text{mol}^{-1}$

 $(R) = 1,98 \text{ cal.mol}^{-1}.K^{-1}$

DEFINIÇÕES

CNTP significa condições normais de temperatura e pressão: 0 °C e 760 mmHg.

Condições ambientes: 25 °C e 1 atm.

Condições padrão: 25 °C, 1 atm, concentrações das soluções 1 mol/L (rigorosamente: atividade unitária das espécies), sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) ou (c) = sólido cristalino; (ℓ) = líquido; (g) = gás; (aq) = aquoso; (CM) = Circuito Metálico.

Elemento químico	Número atômico	Massa molar (g/mol)
Н	1	1,01
Be		9,01
B	4 1 4	10,81
	6	12,01
C N	7	14,01
		16,00
OF	8 9	19,00
Na	11	22,99
$A\ell$	13	26,98
Si	14	28,09
P	15	30,97
S	16	32,06
$C\ell$	17	35,45
Ar	18	39,95
K	19	39,10
Cr	24	52,00
Mn	25	54,94
Se	34	78,96
Br	35	79,91
Kr	36	83,80
Ag	47	107,87
Sn	50	118,71
I	53	126,90
Pb	82	207,21

As questões de **01** a **20** <u>NÃO</u> devem ser resolvidas no caderno de soluções. Para respondê-las marque a opção escolhida para cada questão na folha de leitura óptica e na reprodução da folha de leitura óptica (que se encontra na última página do caderno de soluções).

QUESTÃO 1 – Considere as seguintes espécies no estado gasoso: NF₃, BeF₂, BC ℓ_3 , C ℓ F₃, KrF₄ e SeO_4^{2-} . Quais delas apresentam momento de dipolo elétrico?

-) apenas NF₃ e SeO₄²⁻. A () apenas BeF₂, $C\ell F_3$ e KrF₄. B (
-) apenas BC ℓ_3 , SeO $_4^{2-}$ e KrF $_4$. C (
-) apenas NF₃ e $C\ell F_3$.
-) apenas BeF₂, BC ℓ_3 e SeO₄²⁻. E (

QUESTÃO 2 – A adição de glicose sólida $(C_6H_{12}O_6)$ a clorato de potássio $(KC\ell O_3)$ fundido, a 400 °C, resulta em uma reação que forma dois produtos gasosos e um sólido cristalino. Quando os produtos gasosos formados nessa reação, e resfriados à temperatura ambiente, são borbulhados em uma solução aquosa 0,1 mol/L em hidróxido de sólido, contendo algumas gotas de fenolftaleína, verifica-se a mudança de cor desta de rosa para incolor. O produto sólido cristalino apresenta alta condutividade elétrica, tanto no estado líquido como em solução aquosa. Assinale a opção CORRETA que apresenta os produtos formados na reação entre glicose e clorato potássio:

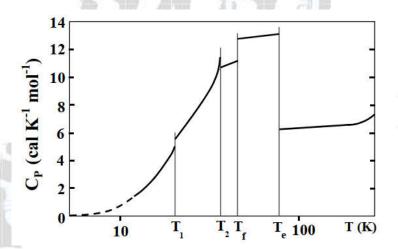
-) $C\ell O_2(g)$, $H_2(g)$, C(s).
-) $CO_2(g)$, $H_2O(g)$, $KC\ell(s)$.
- C () CO(g), $H_2O(g)$, $KC\ell O_4(s)$.
- D () CO(g), $CH_4(g)$, $KC\ell O_2(s)$.
-) $C\ell_2(g)$, $H_2O(g)$, $K_2CO_3(s)$.

QUESTÃO 3 - Considere as seguintes configurações eletrônicas de espécies no estado gasoso:

- I. 1s² 2s² 2p¹.
- II. $1s^2 2s^2 2p^3$.
- III. 1s² 2s² 2p⁴.
- IV. 1s² 2s² 2p⁵.
- V. 1s² 2s² 2p⁵ 3s¹.

Assinale a alternativa ERRADA.

-) As configurações I e IV podem representar estados fundamentais de cátions do segundo período da Tabela Periódica.
- B () As configurações II e III podem representar tanto um estado fundamental como um estado excitado de átomos neutros do segundo período da Tabela Periódica.
- C () A configuração V pode representar um estado excitado de um átomo neutro do segundo período da Tabela Periódica.
- D () As configurações II e IV podem representar estados excitados de átomos neutros do segundo período da Tabela Periódica.
- E () As configurações II, III e V podem representar estados excitados de átomos neutros do segundo período da Tabela Periódica.


QUESTÃO 4 - Considere as seguintes afirmações relativas aos sistemas descritos abaixo, sob pressão de 1 atm:

- I. A pressão de vapor de uma solução aquosa de glicose 0,1 mol/L é menor do que a pressão de vapor de uma solução de cloreto de sódio 0,1 mol/L a 25 °C.
- II. A pressão de vapor do n-pentano é maior do que a pressão de vapor do n-hexano a 25 °C.
- III. A pressão de vapor de substâncias puras como: acetona, éter etílico, etanol e água, todas em ebulição, tem o mesmo valor.
- IV. Quanto maior for a temperatura, maior será a pressão de vapor de uma substância.
- V. Quanto maior for o volume de um líquido, maior será a sua pressão de vapor.

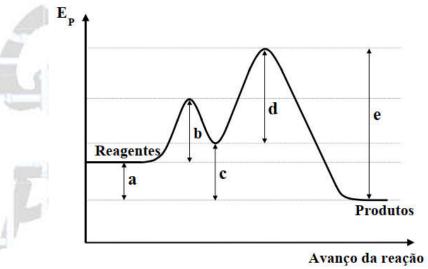
Destas afirmações, estão CORRETAS

- A () apenas I, II, III e IV.
- B () apenas I, II e V.
- C () apenas I, IV e V.
- D () apenas II, III e IV.
- E () apenas III, IV e V.

QUESTÃO 5 - A figura abaixo mostra como a capacidade calorífica, C_p, de uma substância varia com a temperatura, sob pressão constante.

T_f = Temperatura de fusão

T_e = Temperatura de ebulição

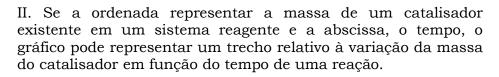

Considerando as informações mostradas na figura acima, é ERRADO afirmar que

- A () a substância em questão, no estado sólido, apresenta mais de uma estrutura cristalina diferente.
- B () a capacidade calorífica da substância no estado gasoso é menor do que aquela no estado líquido.
- C () quer esteja a substância no estado sólido, líquido ou gasoso, sua capacidade calorífica aumenta com o aumento da temperatura.
- D () caso a substância se mantenha no estado líquido em temperaturas inferiores a $T_{\rm f}$, a capacidade calorífica da substância líquida é maior do que a capacidade calorífica da substância na fase sólida estável em temperaturas menores do que $T_{\rm f}$.
- E () a variação de entalpia de uma reação envolvendo a substância em questão no estado líquido aumenta com o aumento da temperatura.

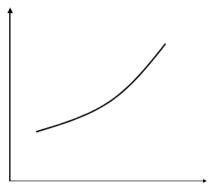
QUESTÃO 6 - A respeito de compostos contendo silício, qual das opções abaixo apresenta a afirmação CORRETA?

- A () Vidros são quimicamente resistentes ao ataque de hidróxido de sódio.
- B () Vidros se fundem completamente em um único valor de temperatura na pressão ambiente.
- C () Quartzo apresenta um arranjo ordenado de suas espécies constituintes que se repente periodicamente nas três direções.
- D () Vidros comerciais apresentam uma concentração de dióxido de silício igual a 100 % (m/m).
- E () Quartzo é quimicamente resistente ao ataque de ácido fluorídrico.

QUESTÃO 7 – Considere uma reação química representada pela equação: Reagentes \rightarrow Produtos. A figura abaixo mostra esquematicamente como varia a energia potencial (Ep) deste sistema reagente em função do avanço da reação química. As letras $\underline{\mathbf{a}}$, $\underline{\mathbf{b}}$, $\underline{\mathbf{c}}$, $\underline{\mathbf{d}}$ e $\underline{\mathbf{e}}$ representam diferenças de energia.



Com base nas informações apresentadas na figura é CORRETO afirmar que


- A () a energia de ativação da reação direta é a diferença de energia dada por c a + d.
- B () a variação de entalpia da reação é a diferença de energia dada por **e d**.
- C () a energia de ativação da reação direta é a diferença de energia dada por **b** + **d**.
- D () a variação de entalpia da reação é a diferença de energia dada por e (a + b).
- E () a variação de entalpia da reação é a diferença de energia dada por e.

QUESTÃO 8 - Considere as seguintes afirmações relativas ao gráfico ao lado:

I. Se a ordenada representar a constante de equilíbrio de uma reação química exotérmica e a abscissa, a temperatura, o gráfico pode representar um trecho da curva relativa ao efeito da temperatura sobre a constante de equilíbrio dessa reação.

III. Se a ordenada representar a concentração de um sal em solução aquosa e a abscissa, a temperatura, o gráfico pode representar um trecho da curva de solubilidade deste sal em água.

IV. Se a ordenada representar a pressão de vapor de um equilíbrio líquido \rightleftharpoons gás e a abscissa, a temperatura, o gráfico pode representar um trecho da curva de pressão de vapor deste líquido.

V. Se a ordenada representar a concentração de $NO_2(g)$ existente dentro de um cilindro provido de um pistão móvel, sem atrito, onde se estabeleceu o equilíbrio $N_2O_4(g) \longleftrightarrow 2NO_2(g)$, e a abscissa, a pressão externa exercida sobre o pistão, o gráfico pode representar um trecho da curva relativa à variação da concentração de NO_2 em função da pressão externa exercida sobre o pistão, à temperatura constante.

Destas afirmações, estão CORRETAS

A () apenas I e III.

B () apenas I, IV e V.

C () apenas II, III e V.

D () apenas II e V.

E () apenas III e IV.

QUESTÃO 9 - Para as mesmas condições de temperatura e pressão, considere as seguintes afirmações relativas à condutividade elétrica de soluções aquosas:

I - A condutividade elétrica de uma solução 0,1 mol/L de ácido acético é menor do que aquela do ácido acético glacial (ácido acético praticamente puro).

II - A condutividade elétrica de uma solução 1 mol/L de ácido acético é menor do que aquela de uma solução de ácido tri-cloro-acético com igual concentração.

III - A condutividade elétrica de uma solução 1 mol/L de cloreto de amônio é igual àquela de uma solução de hidróxido de amônio com igual concentração.

IV - A condutividade elétrica de uma solução 1 mol/L de hidróxido de sódio é igual àquela de uma solução de cloreto de sódio com igual concentração.

V - A condutividade elétrica de uma solução saturada em iodeto de chumbo é menor do que aquela do sal fundido.

Destas afirmações, estão ERRADAS
A () apenas I e II.
B () apenas I, III e IV.
C () apenas II e V.
D () apenas III, IV e V.
E () todas.
QUESTÃO 10 - Seja S a solubilidade de Ag ₃ PO ₄ em 100 g de água pura numa dada temperatura A seguir, para a mesma temperatura, são feitas as seguintes afirmações a respeito da solubilidad de Ag ₃ PO ₄ em 100 g de diferentes soluções aquosas:
I. A solubilidade do ${\rm Ag_3PO_4}$ em solução aquosa 1 mol/L de ${\rm HNO_3}$ é maior do que S .
II. A solubilidade do ${\rm Ag_3PO_4}$ em solução aquosa 1 ${\rm mol/L}$ de ${\rm AgNO_3}$ é menor do que S .
III. A solubilidade do ${\rm Ag_3PO_4}$ em solução aquosa 1 mol/L de ${\rm Na_3PO_4}$ é menor do que S .
IV. A solubilidade do ${\rm Ag_3PO_4}$ em solução aquosa 1 mol/L de KCN é maior do que S .
V. A solubilidade do ${\rm Ag_3PO_4}$ em solução aquosa 1 mol/L de ${\rm NaNO_3}$ é praticamente igual a S .
Destas afirmações, estão CORRETAS
A () apenas I, II e III. B () apenas I, III e IV. C () apenas II, III e IV. D () apenas II, III e V. E () todas.
QUESTÃO 11 – A massa de um certo hidrocarboneto é igual a 2,60 g. As concentrações, er porcentagem em massa, de carbono e de hidrogênio neste hidrocarboneto são iguais a 82,7 % 17,3 %, respectivamente. A fórmula molecular do hidrocarboneto é
A () CH ₄ .
$B \begin{pmatrix} 1 \\ 1 \end{pmatrix} C_2H_4.$
$C \left(\right) C_2H_6.$
D () C_3H_8 . E () C_4H_{10} .
QUESTÃO 12 - Um elemento galvânico é constituído pelos eletrodos abaixo especificados
separados por uma ponte salina.

ELETRODO II: sulfato de chumbo sólido prensado contra uma "peneira" de chumbo metálico mergulhada em uma solução aquosa 1 mol/L de ácido sulfúrico. Nas condições-padrão, o potencial de cada um destes eletrodos, em relação ao eletrodo padrão de hidrogênio, é

ELETRODO I: placa de chumbo metálico mergulhada em uma solução aquosa 1 mol/L de nitrato

de chumbo.

$$\begin{split} E_{p_b/p_b SO_4, SO_4^{2^-}}^\circ &= -0,\!1264~V & \text{(ELETRODO I)}. \\ E_{p_b/p_b SO_4, SO_4^{2^-}}^\circ &= -0,\!3546~V & \text{(ELETRODO II)}. \end{split}$$

Assinale a opção que contém a afirmação CORRETA sobre as alterações ocorridas neste elemento galvânico quando os dois eletrodos são conectados por um fio de baixa resistência elétrica e circular corrente elétrica no elemento.

- A () A massa de sulfato de chumbo sólido na superficie do ELETRODO II aumenta.
- B () A concentração de íons sulfato na solução aquosa do ELETRODO II aumenta.
- C () O ELETRODO I é o pólo negativo.
- D () O ELETRODO I é o anodo.
- E () A concentração de íons chumbo na solução aquosa do ELETRODO I aumenta.

QUESTÃO 13 – Considere os valores da temperatura de congelação de soluções 1 milimol/L das seguintes substâncias:

- I. $A\ell_2(SO_4)_3$.
- II. $Na_2B_4O_7$.
- III. $K_2Cr_2O_7$.
- IV. Na₂CrO₄.
- V. $A\ell(NO_3)_3 \cdot 9H_2O$.

Assinale a alternativa CORRETA relativa à comparação dos valores dessas temperaturas.

- A () I < II < V < III < IV.
- B () $I < V < II \cong III \cong IV$.
- C () II < III < IV < I < V.
- D() V < II < III < IV < I.
- $E() V \cong II < III < IV < I.$

QUESTÃO 14 - Qual das substâncias abaixo apresenta isomeria geométrica?

- A () Ciclo-propano.
- B () Ciclo-buteno.
- C () Ciclo-pentano.
- D () Ciclo-hexano.
- E () Benzeno.

Ç	UESTÃO	15 -	Considere	os	sistemas	apresentados	а	seguir:

I. Creme de leite.
II. Maionese comercial.
III. Óleo de soja.
IV. Gasolina.
V. Poliestireno expandido.
Destes, são classificados como sistemas coloidais
A () apenas I e II. B () apenas I, II e III. C () apenas II e V. D () apenas I, II e V. E () apenas III e IV.
QUESTÃO 16 - Assinale a opção que apresenta um par de substâncias isomorfas.
A () Grafita(s), diamante(s). B () Oxigênio(g), ozônio(g). C () Cloreto de sódio(s), cloreto de potássio(s). D () Dióxido de enxofre(g), trióxido de enxofre(g). E () Monóxido de chumbo(s), dióxido de chumbo(s).
QUESTÃO 17 – Considere as soluções aquosas obtidas pela dissolução das seguintes quantidades de solutos em 1 L de água:
I. 1 mol de acetato de sódio e 1 mol de ácido acético.
II. 2 mols de amônia e 1 mol de ácido clorídrico.
III. 2 mols de ácido acético e 1 mol de hidróxido de sódio.
IV. 1 mol de hidróxido de sódio e 1 mol de ácido clorídrico.
V. 1 mol de hidróxido de amônio e 1 mol de ácido acético.
Das soluções obtidas, apresentam efeito tamponante
A () apenas I e V. B () apenas I, II e III. C () apenas I, II, III e V. D () apenas III, IV e V. E () apenas IV e V.

QUESTÃO 18 - Considere o caráter ácido-base das seguintes espécies:

- I. H₂O.
- II. C₅H₅N (piridina).
- III. $(C_2H_5)_2$ NH (di-etil-amina).
- IV. $\left[\left(C_2H_5\right)_2NH_2\right]^+$ (di etil amônio).
- V. C₂H₅OH (etanol).

Segundo a definição ácido-base de Brönsted, dentre estas substâncias, podem ser classificadas como base

- A () apenas I e II.
- B () apenas I, II e III.
- C () apenas II e III.
- D () apenas III, IV e V.
- E () todas.

QUESTÃO 19 - A equação química que representa a reação de decomposição do iodeto de hidrogênio é:

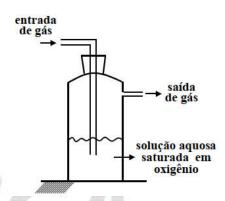
$$2HI(g) \longrightarrow H_2(g) + I_2(g); \Delta H (25^{\circ}C) = -51.9 \text{ kJ}.$$

Em relação a esta reação, são fornecidas as seguintes informações:

- **a)** A variação da energia de ativação aparente dessa reação ocorrendo em meio homogêneo é igual a 183,9 kJ.
- **b)** A variação da energia de ativação aparente dessa reação ocorrendo na superfície de um fio de ouro é igual a 96,2 kJ.

Considere, agora, as seguintes afirmações relativas a essa reação de decomposição:

- I. A velocidade da reação no meio homogêneo é igual a da mesma reação realizada no meio heterogêneo.
- II. A velocidade da reação no meio homogêneo diminui com o aumento da temperatura.
- III. A velocidade da reação no meio heterogêneo independe da concentração inicial de iodeto de hidrogênio.
- IV. A velocidade da reação na superfície do ouro independente da área superfícial do ouro.
- V. A constante de velocidade da reação realizada no meio homogêneo é igual a da mesma reação realizada no meio heterogêneo.


Destas afirmações, estão CORRETAS

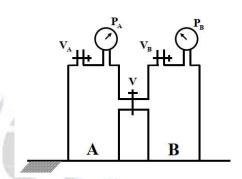
A () apenas I, III e IV.
B () apenas I e IV.
C () apenas II, III e V.
D () apenas II e V.

) nenhuma.

E (

QUESTÃO 20 - O frasco mostrado na figura ao lado contém uma solução aquosa saturada em oxigênio, em contato com ar atmosférico, sob pressão de latm e temperatura de 25 °C. Quando gás é borbulhado através desta solução, sendo a pressão de entrada do gás maior do que a pressão de saída, de tal forma que a pressão do gás em contato com a solução possa ser considerada constante e igual a latm, é ERRADO afirmar que a concentração de oxigênio dissolvido na solução

- A ()permanece inalterada, quando o gás borbulhado, sob temperatura de 25 °C, é ar atmosférico.
- B () permanece inalterada, quando o gás borbulhado, sob temperatura de 25 °C é nitrogênio gasoso.
- C () aumenta, quando o gás borbulhado, sob temperatura de 15 °C, é ar atmosférico.
- D () aumenta, quando o gás borbulhado, sob temperatura de 25 °C, é oxigênio praticamente puro.
- E () permanece inalterada, quando o gás borbulhado, sob temperatura de 25 °C, é uma mistura de argônio e oxigênio, sendo a concentração de oxigênio nesta mistura igual à existente no ar atmosférico.


Gabarito das questões de múltipla escolha

TESTE 01 – Alternativa D	TESTE 11 – Alternativa E
TESTE 02 – Alternativa B	TESTE 12 – Alternativa A
TESTE 03 – Alternativa D	TESTE 13 – Alternativa B
TESTE 04 – Alternativa D	TESTE 14 – Sem resposta
TESTE 05 – Alternativa E	TESTE 15 – Alternativa D
TESTE 06 – Alternativa C	TESTE 16 – Alternativa C
TESTE 07 – Alternativa A	TESTE 17 – Alternativa C
TESTE 08 – Alternativa E	TESTE 18 – Sem resposta
TESTE 09 – Alternativa B	TESTE 19 – Alternativa E
TESTE 10 – Alternativa E	TESTE 20 – Alternativa B

As questões dissertativas, numeradas de 21 a 30, devem ser respondidas no caderno de soluções.

Questão 21. A figura ao lado representa um sistema constituído por dois recipientes, \mathbf{A} e \mathbf{B} , de igual volume, que se comunicam através da válvula \mathbf{V} . Água pura é adicionada ao recipiente \mathbf{A} através da válvula $\mathbf{V}_{\mathbf{A}}$, que é fechada logo a seguir. Uma solução aquosa 1,0 mol/L de NaC ℓ é adicionada ao recipiente \mathbf{B} através da válvula $\mathbf{V}_{\mathbf{B}}$, que também é fechada a seguir. Após o equilíbrio ter sido atingido, o volume de água líquida no recipiente \mathbf{A} é igual a 5,0 mL, sendo a pressão igual a $\mathbf{P}_{\mathbf{A}}$; e o volume de solução aquosa de NaC ℓ no recipiente \mathbf{B} é igual a 1,0 L, sendo a pressão igual a $\mathbf{P}_{\mathbf{B}}$. A seguir, a válvula \mathbf{V} é aberta (tempo t = zero), sendo a temperatura mantida constante durante todo o experimento.

- a) Em um mesmo gráfico de pressão (ordenada) versus tempo (abscissa), mostre como varia a pressão em cada um dos recipientes, desde o tempo $t = \infty$.
- **b)** Descreva o que se observa neste experimento, desde tempo t=0 até $t=\infty$, em termos dos valores das pressões indicadas nos medidores e dos volumes das fases líquidas em cada recipiente.

Questão 22. Na tabela abaixo são mostrados os valores de temperatura de fusão de algumas substâncias

Substância	Temperatura de fusão (°C)		
Bromo	-7		
Água	0		
Sódio	98		
Brometo de Sódio	747		
Silício	1414		

Em termos dos tipos de interação presentes em cada substância, justifique a ordem crescente de temperatura de fusão das substâncias listadas.

Questão 23. A equação química que representa a reação de decomposição do gás N_2O_5 é:

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$
.

A variação da velocidade de decomposição do gás N_2O_5 é dada pela equação algébrica: v=k. $[N_2O_5]$, em que ${\bf k}$ é a constante de velocidade desta reação, e $[N_2O_5]$ é a concentração, em mol/L, do N_2O_5 , em cada tempo.

A tabela ao lado fornece os valores de $\ln[N_2O_5]$ em função do tempo, sendo a temperatura mantida constante.

- **a)** Determine o valor da constante de velocidade (k) desta reação de decomposição. Mostre os cálculos realizados.
- **b)** Determine o tempo de meia-vida do N_2O_5 no sistema reagente. Mostre os cálculos realizados.

Tempo (s)	$\ell n [N_2 O_5]$
0	- 2,303
50	- 2,649
100	- 2,996
200	- 3,689
300	- 4,382
400	- 5,075

Questão 24. Em um balão fechado e sob temperatura de 27 °C, $N_2O_4(g)$ está em equilíbrio com $NO_2(g)$. A pressão total exercida pelos gases dentro do balão é igual a 1,0 atm e, nestas condições, $N_2O_4(g)$ encontra-se 20 % dissociado.

- a) Determine o valor da constante de equilíbrio para a reação de dissociação do $N_2O_4(g)$. Mostre os cálculos realizados.
- **b)** Para a temperatura de 27 °C e pressão total dos gases dentro do balão igual a 0,10 atm, determine o grau de dissociação do $N_2O_4(g)$. Mostre os cálculos realizados.

Questão 25. Um produto natural encontrado em algumas plantas leguminosas apresenta a seguinte estrutura:

- a) Quais são os grupos funcionais presentes nesse produto?
- b) Que tipo de hibridização apresenta cada um dos átomos de carbono desta estrutura?
- c) Quantas são as ligações sigma e pi presentes nesta substância?

Questão 26. A reação química de um determinado alceno \mathbf{X} com ozônio produziu o composto \mathbf{Y} . A reação do composto \mathbf{Y} com água formou os compostos \mathbf{A} , \mathbf{B} e água oxigenada. Os compostos \mathbf{A} e \mathbf{B} foram identificados como um aldeído e uma cetona, respectivamente. A tabela abaixo mostra as concentrações (% m/m) de carbono e hidrogênio presentes nos compostos \mathbf{A} e \mathbf{B} :

Carbono (% m/m)	Hidrogênio (% m/m)
54,6	9,1
62,0	10,4
	54,6

Com base nas informações acima, apresente

- a) as fórmulas moleculares e estruturais dos compostos: X, Y, A e B. Mostre os cálculos realizados, e
- **b)** as equações químicas balanceadas relativas às duas reações descritas no enunciado da questão.

Questão 27. Em um béquer, a 25 °C e 1 atm, foram misturadas as seguintes soluções aquosas: permanganato de potássio $(KMnO_4)$, ácido oxálico $(H_2C_2O_4)$ e ácido sulfúrico (H_2SO_4) . Nos minutos seguintes após a homogeneização desta mistura, nada se observou. No entanto, após a adição de um pequeno cristal de sulfato de manganês $(MnSO_4)$ a esta mistura, observou-se o descoramento da mesma e a liberação de um gás. Interprete as observações feitas neste experimento. Em sua interpretação devem constar:

- **a)** a justificativa para o fato de a reação só ser observada após a adição de sulfato de manganês sólido, e
- b) as equações químicas balanceadas das reações envolvidas.
- **Questão 28.** Um béquer de 500 mL contém 400 mL de água pura a 25 °C e 1 atm. Uma camada fina de talco é espalhada sobre a superficie da água, de modo a cobri-la totalmente.
- **a)** O que deverá ser observado quando uma gota de detergente é adicionada na região central da superfície da água coberta de talco?
- **b)** Interprete o que deverá ser observado em termos das interações físico-químicas entre as espécies.
- **Questão 29.** Considere o elemento galvânico da QUESTÃO 12, mas substitua a solução aquosa de $Pb(NO_3)_2$ do ELETRODO I por uma solução aquosa $1,00\times10^{-5}$ mol/L de $Pb(NO_3)_2$, e a solução aquosa de H_2SO_4 do ELETRODO II por uma solução aquosa $1,00\times10^{-5}$ mol/L de H_2SO_4 . Considere também que a temperatura permanece constante e igual a 25 °C.
- a) Determine a força eletromotriz deste novo elemento galvânico. Mostre os cálculos realizados.

Agora, considerando que circula corrente elétrica no novo elemento galvânico, responda:

- b) Qual dos eletrodos, ELETRODO I ou ELETRODO II, será o anodo?
- c) Qual dos eletrodos será o pólo positivo do novo elemento galvânico?
- d) Qual o sentido do fluxo de elétrons que circula no circuito externo?
- e) Escreva a equação química balanceada da reação que ocorre neste novo elemento galvânico.

Questão 30. Explique por que água pura exposta à atmosfera e sob pressão de 1,0 atm entra em ebulição em uma temperatura de 100 °C, enquanto água pura exposta à pressão atmosférica de 0,7 atm entra em ebulição em uma temperatura de 90 °C.