ITA 1986

Duração da prova: 03 h (três horas).

O EXAME DE QUÍMICA comporta duas Provas:

- Prova de Testes de Múltipla Escolha e
- Prova de Perguntas e Respostas.

O caderno de questões contém os dados e 20 (vinte) testes de múltipla escolha, cada um comportando também uma pergunta.

O caderno de respostas possui espaços reservados para 20 (vinte) questões.

DADOS

Constante de Avogadro = $6,02 \times 10^{23}$ partículas.mol⁻¹

Constante de Faraday = $9,64870 \times 10^4$ C.mol⁻¹

Volume molar = 22,4 L (CNTP)

CNTP = condições normais de temperatura e pressão

Temperatura em K = 273 + valor numérico da temperatura em °C

 $R = 8.21 \times 10^{-2} \text{ L.atm.K}^{-1}.\text{mol}^{-1}$

- (c) = sólido ou cristalino;
- (ℓ) = líquido;
- (g) = gasoso.

1
0 10
A.F.

Testes de múltipla escolha com as respectivas perguntas

QUESTÃO 1 - Verificou-se que as massas, em gramas, dos elementos A e B, que se combinam (sem falta nem excesso) para formar 100 g dos compostos binários distintos I e II são:

Composto	Massa de A	Massa de B
I	$m_{A,I} = 77,73 \text{ g}$	$m_{B,I} = 22,27 g$
II	$m_{A.II} = 69,34 g$	$m_{B.II} = 30,06 \text{ g}$

 () A. As informações tabeladas confirmam a hipótese de Avogad 	() A. As	s informa	ções ta	beladas	confirmam	a hipótese	de Avogad	lro
--	---	---------	-----------	---------	---------	-----------	------------	-----------	-----

()	В.	Das	informaçõe	s tabeladas	pode-se	obter,	sem	ambigüidade,	tanto o	peso	atômico	do
е	lemer	nto	A co	mo o peso a	tômico do e	lemento l	B.						

-) C. As informações tabeladas confirmam a lei de Gay-Lussac.
- () D. As informações tabeladas estão de acordo com a hipótese atômica de Dalton.
- () E. O composto II tem fórmula mínima A₅B₂.

PERGUNTA 1

Supondo que a fórmula do composto I seja $(A_1B_1)_x$ e que a fórmula do composto II seja $(A_aB_b)_y$, mostre os raciocínios que permitem obter valores para os coeficientes \underline{a} e \underline{b} , partindo dos dados analíticos acima. Deve ficar claro como isto é possível mesmo se \underline{x} e \underline{y} forem desconhecidos. Resultados de quocientes eventualmente úteis:

$$\frac{77,73}{69,94} = 1,111;$$
 $\frac{22,27}{30,06} = 0,741;$ $\frac{1,111}{0,741} = 1,500$

$$\frac{77,73}{22,27} = 3,490; \quad \frac{69,94}{30,06} = 2,327; \quad \frac{3,490}{2,327} = 1,500$$

QUESTÃO 2 – A respeito das substâncias $CC\ell_{4(\ell)}$; $I_{2(c)}$; $NH_{3(\ell)}$; $CsF_{(c)}$ e $CO_{2(g)}$ qual das opções abaixo contém a afirmação FALSA?

1) A Tá 2770 0	limação C	C/ 6 mal			~~~	1 é 1 -	000	á malam
	i A. Ja que a	ngacao C-	- Cle poi	ar, segue	e necessariamente	aue a	moiecuia		e polar.

- () B. A coesão entre as moléculas no iodo cristalino pode ser explicada por interações do tipo dipolo induzido-dipolo induzido.
-) C. No amoníaco liquefeito ocorrem tanto ligações covalentes como por pontes de hidrogênio.
- D. Tanto no CsF sólido quanto na CsF líquido encontram-se cátions e ânions que se atraem por forcas de natureza eletrostática.
- () E. A geometria linear simétrica da molécula CO₂ pode ser explicada em termos de uma hibridização sp dos orbitais do carbono.

PERGUNTA 2

Por que a opção a é FALSA ou VERDADEIRA?

QUESTÃO 3 – Nota-se que uma solução aquosa diluída de FeSO₄, inicialmente incolor e límpida, depois de alguns dias em contato com ar (isento de poeira) acaba ficando turva com formação de um precipitado marrom-avermelhado.

A respeito dessa observação são feitas as seguintes afirmações:

- I Deve ter ocorrido consumo de oxigênio do ar em contato com a solução;
- II Os ions de Fe²⁺ da solução devem ter sido oxidados a Fe³⁺;
- III O pH da solução deve ter diminuído;
- IV O precipitado deve ser de Fe(OH)3 sólido.

Das afirmações acima são VERDADEIRAS

- () A. Apenas I e II.
- B. Apenas I, II e IV.
- () C. Apenas II, III e IV.
 -) D. Apenas III e IV.
 -) E. Todas.

PERGUNTA 3

Escreva as equações químicas balanceadas da seqüência de reações envolvidas na formação do precipitado observado.

QUESTÃO 4 - Qual das opções abaixo contém a afirmação FALSA a respeito de óxidos?

- () A. MgO e um exemplo de óxido pouco solúvel em água.
- () B. ZnO dissolve-se, seja em solução aquosa de ácido sulfúrico, seja em solução aquosa de hidróxido de sódio.
- () C. NO é exemplo de óxido cuja formação a partir dos elementos ocorre por reação exotérmica.
- D. CO é exemplo de óxido que não reage nem com ácido nem com base para formar sais.
- () E. Cl₂O é exemplo de óxido ácido bem solúvel em água.

PERGUNTA 4

Como se obtém CO na indústria? Cite uma aplicação prática importante do CO. Todas as respostas devem ser acompanhadas das respectivas equações químicas envolvidas.

QUESTÃO 5 – A respeito da reação reversível $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ e levando em conta os princípios que regem a síntese do amoníaco, são feitas as seguintes afirmações:

- I O princípio de Le Chatelier prevê que um aumento na pressão total da mistura gasosa deve deslocar o equilíbrio acima para o lado direito.
- $\label{eq:eq:energy} \text{II } \acute{\text{E}} \text{ constante, para cada valor de temperatura, a relação } K = \frac{\left[NH_3\right]_{eq}}{\left[N_2\right]_{eq}^{1/2} \cdot \left[H_2\right]_{eq}^{3/2}} \text{, onde } \left[\phantom{\frac{1}{2}}\right]_{eq}^{eq}$

representa a concentração de equilíbrio da espécie considerada.

- III No processo industrial de preparação do amoníaco, empregam-se catalisadores cuja função é reduzir o tempo para o estabelecimento do equilíbrio.
- IV Os gases que entram em contato com o catalisador não devem conter certas impurezas, como o H_2S , que poderiam desativar o catalisador.
- V A síntese industrial do amoníaco constitui um processo contínuo em que a mistura dos gases reagentes, em proporção estequiométrica, entra no reator, que já contém o catalisador, e sai dele parcialmente convertida em amoníaco.

Das afirmações feitas são VERDADEIRAS:

() A. Apenas I, II e III.
() B. Apenas I, III e V
() C. Apenas II e IV.
() D. Apenas IV e V.
ĺ) F Todas

PERGUNTA 5

Desenhe a aparelhagem que permite obter amoníaco a partir de soda cáustica e solução aquosa de um sal de amônio.

QUESTÃO 6 - Todas as afirmações a seguir referem-se ao processo de obtenção do ácido sulfúrico.

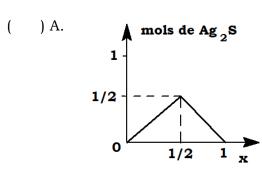
I – FeS₂ empregado na obtenção do SO₂ é conhecido como blenda.

II - Um dos catalisadores utilizados na oxidação do SO₂ a SO₃ é um óxido de vanádio.

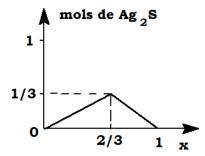
III – Sabendo-se que para a reação $SO_2(g) + 1/2 O_2(g) \longleftrightarrow SO_3(g)$ o ΔH é negativo, pode-se concluir que o equilíbrio será deslocado para a direita se a temperatura for aumentada.

IV - Aumentando a temperatura, a velocidade da reação representada em (III) deverá aumentar.

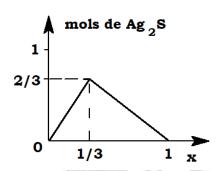
V - A oxidação, por oxigênio, do SO₂ dissolvido em água é mais rápida do que a do SO₂ gasoso.

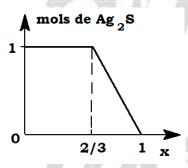

Dessas afirmações são VERDADEIRAS apenas:

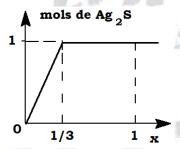
```
( ) A. I, II e IV.
( ) B. I, II e V.
( ) C. II, III e IV.
( ) D. II, IV e V.
( ) E. III, IV e V.
```


PERGUNTA 6

Explique porque ácido sulfúrico não pode ser preparado aquecendo ácido nítrico e sulfato de sódio, apesar de essas matérias primas serem de baixo custo.


QUESTÃO 7 – Considere misturas de enxofre em pó com limalha de prata. Se estas misturas forem aquecidas na ausência de ar, formar-se-á Ag_2S . Admita que a reação é completa e que a soma dos números de mols de enxofre e de prata é sempre igual a <u>um</u>. Por exemplo: 0,30 mols de S(c) + 0,70 mols de Ag(c); neste exemplo particular é fácil ver quantos mols de Ag_2S serão formados e quantos mols do reagente em excesso irão sobrar. Este problema pode ser generalizado para misturas de (1 - x)S(c) e xAg(c), onde x é uma variável definida no intervalo de x0 a x1.


() B.


() C.

() D.

() E.

Das opções anteriores, qual a que contém o gráfico VERDADEIRO que relaciona o número de mols de Ag_2S produzido com o valor de \underline{x} ?

PERGUNTA 7

Trace os dois gráficos seguintes:

- a) número de mols de enxofre, que sobram, em função de x;
- b) número de mols de prata, que sobram, em função de \underline{x} .

Assinale nesses gráficos os valores das ordenadas e das abscissas correspondentes à localização de inflexões.

QUESTÃO 8 - Uma porção de Na₂C₂O₄ foi dividida em duas amostras com <u>massas iguais</u>.

A <u>primeira amostra</u>, após dissolução em água, foi titulada com solução 0,10 molar de permanganato de potássio em meio ácido. Esta titulação pode ser representada pela seguinte equação: $2\text{MnO}_4^- + 5\text{C}_2\text{O}_4^{2-} + 16\text{H}^+ \longrightarrow 2\text{Mn}^{2+} + 8\text{H}_2\text{O} + 10\text{CO}_2$.

A <u>segunda amostra</u> foi aquecida em presença de oxigênio e o resíduo resultante, após dissolução em água, consumiu $10,0~\text{cm}^3$ de solução aquosa 0,30~molar de $\text{HC}\ell$ para neutralização completa. Admite-se que a reação no aquecimento é representada pela seguinte equação:

$$Na_2C_2O_4 + 1/2O_2 \longrightarrow Na_2CO_3 + CO_2$$
.

Em face das informações acima, assinale qual das opções abaixo contém a afirmação FALSA.

- () A. A massa de cada amostra é de 0,20 g.
- () B. A massa do resíduo resultante do aquecimento com oxigênio é de 0,16 g.
 -) C. O volume de permanganato gasto na primeira titulação foi de 10,0 cm³.
- () D. A massa de CO₂ desprendida na titulação da primeira amostra é igual ao dobro da massa de CO₂ produzida no aquecimento.
- () E. Caso a reação no aquecimento ocorresse segundo a equação seguinte $2\mathrm{Na_2C_2O_4}+\mathrm{O_2} \longrightarrow \mathrm{Na_2O}+\mathrm{Na_2CO_3}+3\mathrm{CO_2}$ o volume de $\mathrm{HC}\ell$ 0,30 molar, gasto na titulação, seria de 10,0 cm³.

PERGUNTA 8

Em qual das titulações acima não é necessário o acréscimo de indicador para se notar o ponto final? Explique como se observa o ponto final de cada uma das titulações.

QUESTÃO 9 – Certo fermento em pó contém hidrogenocarbonato de sódio, hidrogenotartarato de potássio e amido; sua composição (% em massa) é dada ao lado. O ácido tartárico é o ácido 2,3 – dihidroxi – 1,4 – butanodioico; amido é um componente inerte. O fermento seco é estável mas, em contato com água, produz gás carbônico ao lado de outras substâncias.

NaHCO₃: 26,7 % KHC₄H₄O₆: 59,9 %

Amido: 13,4 %

A respeito desse assunto são feitas as seguintes afirmações:

I – O ${\rm NaHCO_3}$ pode ser obtido borbulhando gás carbônico suficiente através de uma solução aquosa de hidróxido de sódio.

II – No fermento seco, $NaHCO_3$ e $KHC_4H_4O_6$ se encontram numa proporção molar praticamente igual a 1,00 : 1,00.

III – Ao acrescentar água ao fermento, o hidrogenotartarato de sódio funcionará como ácido, enquanto que o hidrogenocarbonato de sódio funcionará como base.

IV – Para produzir 3,00 litros de gás carbônico, medidos a 27 °C e 760 mmHg, é preciso acrescentar cerca de 38,3 g do fermento à água.

V – Ácido tartárico e seus ânions possuem dois átomos de carbono assimétricos. Quais dessas afirmações são VERDADEIRAS?

() A. Apenas I, II, III e IV.
() B. Apenas I, III, IV e V.
() C. Apenas I e V.
() D. Apenas II, III e V.
() E. Todas.

PERGUNTA 9

Equacione a reação entre os ingredientes ativos do fermento na presença de água e indique os cálculos que o levariam à resposta relativa à afirmação IV.

QUESTÃO 10 - Considere os seguintes procedimentos:

- I Misturar Ag(c) com solução aquosa de $Zn(NO_3)_2$.
- II Misturar CuCO₃(c) com solução aquosa de HNO₃.
- III Aquecer CaCO₃(c) numa cápsula sobre o bico de Bünsen.
- IV Misturar soluções aquosas de NaNO₃ e de Pb $\left(\text{CH}_3\text{COO}\right)_2$.
- V Misturar BaO(c) com $H_2O(\ell)$.
- VI Misturar soluções aquosas de HCℓ e de Na₂S.
- VII Borbulhar SO₂(g) em água destilada.

VIII – A uma solução aquosa 0,1 M de AgNO₃ adicionar gradualmente uma solução concentrada de NH₃ em água.

Qual das opções a seguir contém DUAS afirmações FALSAS?

-) A. 1 O gás liberado em II é muito menos tóxico do que aquele liberado em VI.
 - 2 O gás liberado em III tem cheiro desagradável.
- () B. 1 Em IV não ocorrerá formação de precipitado.
 - 2 Em VIII forma-se inicialmente um precipitado sólido que volta a se dissolver à medida que continua a adição da solução de NH₃.
- () C. 1 A fase líquida obtida em V irá turvar quando, através dela, for borbulhado o gás formado em II.
 - 2 O pH da fase líquida de VII é maior do que 7.
- () D. 1 Em I aparecerá zinco metálico.
 - 2 Ao procedimento III dá-se o nome de ustulação.
-) E. 1 A fase líquida de I irá turvar quando, através dela, for borbulhado o gás formado em VI.
 - 2 A solução obtida em V é conhecida como água de barita.

PERGUNTA 10

Dê uma explicação para o fato de que as refinarias de petróleo procuram, na medida do possível, eliminar a presença de compostos sulfurados da gasolina.

QUESTÃO 11 – Considere a equação química abaixo, não balanceada, na qual falta apenas uma substância: $\mathbf{x} \operatorname{Cr_2O_7^{2-}}(aq) + \mathbf{y} \operatorname{H}^+(aq) + 3\operatorname{Sn}^{2+}(aq) \longrightarrow 3\operatorname{Sn}^{4+}(aq) + \mathbf{z} \operatorname{H_2O}(\ell) + \dots$

Qual das opções abaixo contém a afirmação FALSA referente a essa equação e à reação que ela representa?

- () A. O produto que falta é o íon de crômio (III).
- () B. À medida que a reação prossegue o pOH aumenta.
- () C. Dos átomos relacionados, apenas os de oxigênio e de hidrogênio não alteram seu número de oxidação.
-) D. Na equação balanceada x = 1; y = 14 e z = 7.
- () E. A soma de cargas das substâncias do segundo membro da equação balanceada é igual a +18.

PERGUNTA 11

Escreva a equação completa da reação química que ocorre e classifique-a; escreva abaixo de cada participante da reação a respectiva cor.

QUESTÃO 12 – O conjunto de duas células eletrolíticas em serie é ligado a um gerador de corrente contínua. A primeira célula (I) contém uma solução de AgNO₃ entre dois eletrodos de prata; a segunda (II) contém uma solução de um único sal de ouro (onde o numero de oxidação do ouro é desconhecido) entre dois eletrodos de ouro. Deixando a corrente passar durante certo tempo por este conjunto, observa-se que no catodo da célula (I) são depositados 1,079 g de prata, enquanto no catodo da célula (II) são depositados 0,657 g de ouro.

Sabendo que no catodo de cada célula ocorre somente um tipo de reação, qual das opções a seguir contém a afirmação FALSA em relação aos procedimentos e informações relacionados com a questão?

- () A. A carga correspondente à eletrólise acima é igual a 1,00×10⁻² faradays.
- () B. A deposição catódica de 1 mol de prata a partir de uma solução de AgNO₃ corresponde ao consumo, no catodo, de 1 mol de elétrons provenientes do circuito metálico.
- () C. A deposição catódica de 1 mol de ouro a partir da solução da célula (II) corresponde ao consumo, no catodo, de 1 mol de elétrons provenientes do circuito metálico.
- D. O número de oxidação do ouro no sal contido na célula (II) é igual a 3+.
- () E. A perda de massa do anodo de ouro é de $\frac{1}{3} \times 10^{-2}$ mols.

PERGUNTA 12

Mostre detalhadamente como, das informações anteriores, pode ser deduzido o número de oxidação do ouro no sal contido na célula (II).

QUESTÃO 13 - A tabela ao lado refere-se a quatro substâncias líquidas poucos voláteis e muito solúveis em água, utilizáveis como anticongelantes para água empregada em radiadores de automóveis em regiões muito frias.

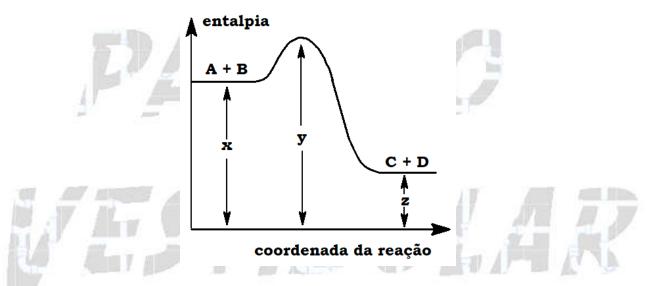
Em relação à produção de um mesmo abaixamento de temperatura de início de solidificação, qual das opções abaixo contém a afirmação FALSA?

Líquidos	P. M. (g/mol)
$I - C_3H_5(OH)_3$	92
II – CH ₃ O(CH ₂) ₂ OCH ₃	90
III – $C_2H_5O(CH_2)_2OH$	90
$IV - C_2H_4(OH)_2$	62
	the state of the s

- () A. Soluções aquosas de mesma molalidade de I e de IV apresentam praticamente a mesma temperatura de ebulição.
- () B. O abaixamento da temperatura de início de solidificação, pela adição de 1 mol de I é duas vezes maior do que aquele provocado pela adição de 1 mol de III, a um mesmo volume de água.
- () C. A mesma massa, para um mesmo volume de água, só teria praticamente o mesmo efeito para II e III.
- () D. A substância IV resulta mais econômica se o preço, por quilograma, for o mesmo para as quatro substâncias.
- () E. O abaixamento de temperatura de início de solidificação do solvente, pela adição de soluto, em princípio independe do número de átomos e de sua posição relativa na molécula do soluto.

PERGUNTA 13

Por que a afirmação c é VERDADEIRA ou é FALSA?


QUESTÃO 14 - Assinale a única opção que contém a afirmação FALSA dentre as seguintes:

- () A. Em medidas de pressão osmótica deve ser empregada uma membrana permeável apenas ao solvente.
- () B. Em experiências de purificação por <u>diálise</u> costumam ser usadas membranas permeáveis a íons e/ou moléculas relativamente pequenos, mas impermeáveis a íons e/ou moléculas muito grandes.
- () C. O fenômeno da osmose só é observado para soluções moleculares, não ocorrendo para soluções iônicas.
- () D. Numa dada pressão, a temperatura de início de ebulição de uma solução aquosa 0,10 M de $CaC\ell_2$ é praticamente igual à de uma solução 0,10 M de Na_2SO_4 .
- () E. Se duas soluções aquosas, no resfriamento, têm a mesma temperatura de início de solidificação, elas serão muito provavelmente isotônicas.

PERGUNTA 14

Deseja-se desdobrar 2 litros de uma solução aquosa $0.15~\mathrm{M}$ de NaC ℓ em: 1 litro de água pura e 1 litro de solução $0.30~\mathrm{M}$ NaC ℓ , isto sem haver afastamento da temperatura ambiente e sem usar destilação, mas utilizando apenas os princípios envolvidos no fenômeno da osmose. Explique como isto poderia ser feito e que tipo de trabalho estaria em jogo. Ilustre sua resposta com uma figura que deixe claro a aparelhagem a ser utilizada.

QUESTÃO 15 – Um equilíbrio químico genérico representado por $A + B \rightleftharpoons C + D$ pode ser discutido em termos de um diagrama do tipo apresentado.

Qual das opções abaixo explica o comportamento observado quando da adição de um catalisador?

() A. S	Só aun	nenta x.
---	--------	--------	----------

) B. Só diminui z.

) C. Só diminui y.

) D. Só diminuem y e z.

) E. Diminuem igualmente x, y e z.

PERGUNTA 15

De o significado das grandezas (y - x), (y - z), (z - x) e (x - z).

QUESTÃO 16 – Chamando de H_1 a entalpia da mistura de 1 mol de C(diam.) + 1 mol de $O_2(g)$; chamando de H_2 a entalpia da mistura de 1 mol de C(graf.) + 1 mol de $O_2(g)$; chamando de H_3 a entalpia de 1 mol de $CO_{2(g)}$ e sabendo que $(H_3 - H_1)_{25 \, {}^{\circ}C} = -94,50$ kcal e $(H_3 - H_2)_{25 \, {}^{\circ}C} = -94,05$ kcal, são feitas as seguintes afirmações:

I – A queima de 1 quilate de diamante libera mais calor do que a de 1 quilate de grafite.

II – É impossível determinar os valores absolutos de H_1 , H_2 e H_3 , embora seja fácil determinar os valores dos ΔH .

III – Para a transformação $2C(graf.) \longrightarrow 2C(diam.)$ podemos concluir que $\Delta H = -0.90$ kcal.

IV – Admitindo que o calor específico médio da água líquida seja 1 cal/(g.ºC), o calor necessário para aquecer 31,4 kg de água da temperatura ambiente (25°C) até a ebulição (P=1 atm) é praticamente igual ao liberado na queira de 3,0 g de C(graf.).

V – Na presença de excesso de oxigênio, a queima do diamante resulta no mesmo produto que a queima do grafite.

Das afirmações feitas é (são) FALSA (S) apenas:

```
( ) A. I, II e V.
( ) B. I e III.
( ) C. II e V.
( ) D. III e IV.
( ) E. IV.
```

PERGUNTA 16

Qual o sentido físico de $(H_1 - H_2)$?

QUESTÃO 17 – Considere as duas soluções seguintes:

I – 0,10 mols de BaC ℓ_2 em água até completar 0,40 litros.

II – 0,20 mols de Na₂SO₄ em água até, completar 1,60 litros.

Admitindo dissociação completa dos solutos, assinale a única opção que contém a afirmação FALSA entre as seguintes:

) A. A so	lução l	$I \in 0.50$) molar	em íons	cloreto.

) B. A solução II contém 0,40 mols de íons cloreto.

) C. Misturando a solução I com a solução II irá ocorrer uma diluição dos íons cloreto.

() D. O fenômeno do desaparecimento dos cristais de cloreto de bário dentro da água usada para preparar a solução I é chamado de dissociação.

) E. A Solução II é mais diluída do que a solução 1.

PERGUNTA 17

Lembrando que quando da mistura destas duas soluções a precipitação de BaSO₄ é praticamente completa e admitindo que o volume da solução resultante é de 2,00 litros, calcule:

- a) A quantidade de BaSO₄ que precipita (mols e gramas);
- b) A concentração (mols/litro) de cada um dos íons presentes na solução resultante após separação do precipitado.

QUESTÃO 18 – Das moléculas citadas abaixo, somente uma apresenta um átomo de carbono com os quatro ligantes desiguais entre si, sendo portanto, uma molécula quiral.

Assinale a molécula em questão.

() A. CH ₃ CHOHCOOH
(B. CHOCOOH
() C. HOCH ₂ COOH
į	D. CH ₃ COCOOH
į) E. CH ₃ OCH ₂ COOH

PERGUNTA 18

Cite o nome oficial e o nome trivial da substância escolhida. Identifique o tipo de isomeria apresentado pela molécula assinalada e descreva sucintamente o arranjo experimental que permite verificar se uma molécula é quiral ou não.

QUESTÃO 19 – Considere a síntese abaixo:

ONA OC
$$_2$$
H $_5$ OC $_2$ H $_5$ O

Assinale a opção que identifica os processos I, II e III, respectivamente.

() A. Esterificação; hidrogenação; arilação.
(B. Alcoólise; amonólise; carboxilação.
() C. Alquilação; redução; acilação.
() D. Oxidação; hidrólise; arilação.
() E. Alquilação; hidrogenólise; formilação.

PERGUNTA 19

Indique, para cada uma das três etapas acima, os reagentes adicionais que poderiam ser usados.

QUESTÃO 20 - As afirmações abaixo são todas relativas a polímeros artificiais e naturais

- I O PVC, muito usado em forma de tubulações, é obtido pela condensação de cloreto de polivinila com isopreno.
- II Da reação de poli-isopreno com enxofre resulta um polímero bastante resistente ao ataque por agentes atmosféricos.
- III Da reação de polimerização de ácido adípico com hexametilenodiamina resulta o Nylon 66.
- IV Polietileno é um exemplo de polímero termofixo.
- V Aminoácidos podem ser obtidos pela degradação de proteínas.
- VI Polietileno é um exemplo de polímero obtido por condensação.
- VII Baquelite é um exemplo de polímero obtido por condensação.
- VIII Glicose pode ser obtida por hidrólise da celulose.

Das opções abaixo, qual a que contém TRÊS afirmações VERDADEIRAS?

() A. I, II, III e IV.
() B. I, IV e V.
() C. II, VI e VII.
į (D. III, IV e VIII.
ì) E. V. VII e VIII.

PERGUNTA 20

Que tipo de polímero é o amido e qual (quais) é (são) o(s) produto(s) de sua hidrólise?

Gabarito das questões tipo testes de múltipla escolha

- 01 Alternativa D
- **02 –** Alternativa A
- 03 Alternativa E
- 04 Alternativa C
- 05 Alternativa E
- 06 Alternativa D
- 07 Alternativa B
- 08 Alternativa C
- 09 Alternativa E
- 10 Alternativa D
- 11 Alternativa B
- 12 Alternativa C
- 13 Alternativa B
- 14 Alternativa C
- 15 Alternativa C
- **16 –** Alternativa D
- 17 Alternativa D
- 18 Alternativa A
- 19 Alternativa C
- 20 Alternativa E