IME 1970

Informações

Utilizar, se necessário, os dados abaixo relacionados:

Pesos atômicos:

H (1,0); C (12,0); O (16,0); Na (23,0); S (32,0); Cℓ (35,5); K (39,0); Ca (40,0); Zn (65,0).

1ª. QUESTÃO: ITEM 1

Dados os elementos A (Z igual a 9); B (Z igual a 10); C (Z igual a 11); D (Z igual a 17) e E (Z igual a 20), preencher as lacunas abaixo:

a) Sinal e valor de carga elétrica do íon formado pelos átomos de A: e E:
b) Tipo de ligação química entre os átomos de A e C:
c) Fórmula molecular do composto formado pelos átomos D e E:

	~		
1 a	OUESTAO:	TTTTM	7
т.	OUESTAU:	1 1 5 141	4

e E: _____

d) Configuração eletrônica de D:

Quando um elemento sofre uma transmutação radioativa, apresenta emissão de partículas e/ou radiações. Completar o quadro abaixo indicando as variações que cada emissão acarreta:

₫′	Variação do número	
	mássico	atômico
Emissão de nêutron	1	0
Emissão de deuteron		
Emissão de α		
Emissão de β		
Emissão de γ		

1ª. QUESTÃO: ITEM 3

Certa amostra, pesando 805 gramas, é formada por Na₂SO₄.10H₂O e 20 % de umidade. Determinar:

- a) Número de moles do sal existente na amostra.
- b) Porcentagem em peso de sódio na amostra úmida.

1ª. QUESTÃO: ITEM 4

Foram neutralizados 25,0 mL de solução aquosa saturada de hidróxido de cálcio com igual volume de solução $\frac{M}{40}$ de ácido sulfúrico. Determinar a solubilidade do hidróxido de cálcio nestas condições, expressando o resultado em gramas por litro de solução.

2ª. QUESTÃO: 10 itens

Colocar no espaço vazio entre parêntesis, após cada sentença a seguir, a letra que identifica o complemento que melhor lhe corresponde.

Exemplo: A fórmula da água é:(b):
a) Ho b) H ₂ O c) HO ₂ d) H ₃ O
ITEM 1) A fórmula molecular do ácido pícrico ou trinitrofenol é:
a) C ₆ H ₃ N ₃ O ₄ ; b) C ₆ H ₃ N ₃ O ₇ ; c) C ₆ H ₇ N ₃ O ₇ ; d) C ₆ H ₇ N ₃ O ₄ ; e) C ₇ H ₃ N ₃ O ₈ ; f) C ₆ H ₃ N ₃ O ₁₀ ; g) C ₆ H ₃ N ₃ O ₅ ; h) nenhuma das fórmulas dadas.
ITEM 2) A fórmula molecular do ácido p-toluenossulfônico é:
a) C ₇ H ₈ SO ₃ ; b) C ₇ H ₈ SO ₄ ; c) C ₇ H ₈ SO ₂ ; d) C ₇ H ₈ SO; e) C ₇ H ₈ SO ₅ ; f) C ₇ H ₁₄ S ₂ O ₃ ; g) C ₇ H ₁₄ SO; h) nenhuma das fórmulas dadas.
ITEM 3) O acetileno nas condições normais de temperatura e pressão é:
 a) um gás de cor esverdeada, inodoro, insolúvel em água; b) um líquido incolor de sabor cáustico; c) um líquido inflamável, mais denso que a água; d) um gás incolor, inflamável, menos denso que o oxigênio; e) um gás incolor, inflamável, mais denso que o oxigênio; f) um líquido viscoso com forte odor de ácido acético; g) um gás incolor, de comportamento químico semelhante ao argônio; h) nenhum complemento satisfaz.
ITEM 4) O glicerol pode ser obtido por:
a) oxidação da glicerina; b) redução da glicerina; c) oxidação da glicina (glicocola); d) redução da glicina; e) hidrólise da glicina; f) oxidação do gliceraldeído; g) redução do gliceraldeído; h) nenhum complemento satisfaz.

PROFESSORA SONIA			
ITEM 5) Para distinguir entre o álcool n-propílico e o éter n-propílico poderíamos verificar quem:			
a) é solúvel em H ₂ SO ₄ concentrados; b) descoraria solução de Br ₂ em CCℓ ₄ ; c) é inflamável; d) dá precipitado com dinitro-2,4-fenilidrazina; e) reagiria com Na metálico; f) dá precipitado no teste do iodofórmio (NaOH + I ₂); g) é capaz de reduzir os reagentes de Fehling e Benedict; h) nenhum complemento satisfaz.			
ITEM 6) A hidrólise da sacarose resulta em:			
a) glucose e dextrose; b) frutose e levulose; c) lactose e glucose; d) lactose e frutose; e) lactose e dextrose; f) lactose e levulose; g) glucose e frutose; h) nenhum complemento satisfaz.			
ITEM 7) A acetona pode ser obtida por:			
a) oxidação do álcool etílico; b) oxidação do álcool n-propílico; c) oxidação do anidrido acético; d) oxidação do ácido acético; e) redução do cloreto de acetila; f) redução de diacetona álcool; g) redução do anidrido acético; h) nenhum complemento satisfaz.			
ITEM 8) O ácido acético para formar acetato de etila deve reagir com:			
a) cloreto de acetila; b) etileno; c) etanol; d) éter etílico; e) etilamina; f) cloreto de etila; g) etilbenzeno; h) nenhum complemento satisfaz.			
ITEM 9) O fenol pode ser obtido por:			
 a) oxidação do ácido fênico; b) monocloração do benzeno e aquecimento sob pressão com solução de soda cáustica; c) monocloração do benzeno e aquecimento sob pressão com mistura sulfonítrica. 			

- d) hidrogenação catalítica do ácido fenilacético;
- e) redução da acetofenona em presença de catalisador;
- f) hidrogenação catalítica seguida de hidrólise ácida do hidroxibenzeno;
- g) oxidação enérgica da fenolftaleína;
- h) nenhum complemento satisfaz.

PROFESSORA SONIA

ITEM 10) Uma reação possível para o acetaldeído é: _____.

- a) a redução para obtenção de acetoxima;
- b) a redução para obtenção de acetanilida;
- c) a redução para obtenção de ácido acetoacético;
- d) a oxidação suave para obtenção de álcool etílico;
- e) a oxidação para obtenção de acetona;
- f) a oxidação para obtenção de acetoxima;
- g) a oxidação para obtenção de ácido acético;
- h) nenhum complemento satisfaz.

3ª. QUESTÃO: ITEM 1

Uma determinada amostra constituída de 204 gramas de cloreto de zinco anidro é dissolvida em 720 gramas de água, formando uma solução com um volume de 750 mL a 20 °C. Para o cloreto de zinco nesta solução calcular:

- a) Molaridade;
- b) Normalidade:
- c) Molalidade;
- d) Fração molar.

3ª. QUESTÃO: ITEM 2

Obtêm-se clorato de potássio pela passagem de cloro em uma solução quente de hidróxido de potássio, produzindo-se também cloreto de potássio e água. Uma solução assim obtida foi evaporada à secura e aquecida para a decomposição do clorato.

Sabendo-se que o resíduo total de cloreto de potássio pesou 298 g, calcular o peso de hidróxido de potássio usado.

3ª. QUESTÃO: ITEM 3

A decomposição por aquecimento de 1000 gramas de certa mistura contendo CaCO₃, NaHCO₃ e material inerte não volátil, produz gases e 640 gramas de resíduo seco. A quantidade de calor absorvida na decomposição é 298 kcal. Calcular a porcentagem de material inerte na mistura inicial, sabendo-se que os calores molares de decomposição são os seguintes: CaCO₃ (44,0 kcal); NaHCO₃ (15,5 kcal) com formação de H₂O(g).

3ª. QUESTÃO: ITEM 4

Dispondo de ciclo-hexanol como único reagente orgânico e de quaisquer reagentes inorgânicos, estabelecer todos os estágios da obtenção em laboratório do dibromo-1,2-ciclo-hexano.